期刊文献+

一类多时滞食物链系统正解的存在性和系统的持久性 被引量:1

Persistence for a Food Chain System with Time Delays and Existence for It's Positive Solutions
下载PDF
导出
摘要 研究了一类具有多时滞及HollingⅡ类功能反应函数的三种群食物链系统,证明了系统正解的存在性,利用比较原理给出了系统为永久持续生存的充分条件。 A food chain model with time delays and HollingⅡ functional response is studied in this paper.The existence of the positive solutions of this system is established,and sufficient conditions about the permanent persistent survival of the system are derived by using comparison principle.
作者 朱焕
出处 《黑龙江八一农垦大学学报》 2011年第6期75-77,共3页 journal of heilongjiang bayi agricultural university
关键词 食物链系统 永久持续 时滞 功能反应 food chain system permanent persistent survival time delay functional response
  • 相关文献

参考文献6

二级参考文献25

  • 1张炳根.测度链上微分方程的进展[J].中国海洋大学学报(自然科学版),2004,34(5):907-912. 被引量:32
  • 2颜向平,张存华.一类具功能反应的食饵-捕食者两种群模型的定性分析[J].生物数学学报,2004,19(3):323-327. 被引量:51
  • 3罗茂才,马知恩.具有分离扩散的两种群Lotka-Volterra模型的持久性[J].生物数学学报,1997,12(1):52-59. 被引量:7
  • 4陈兰荪 井竹君.捕食者—食饵相互作用中的微分方程的极限环存在性和唯一性[J].科学通报,1986,7(1):73-73.
  • 5罗定军,张祥,董梅芳,等.动力系统的定性与分支理论[M].北京:科学出版社,1999:145—148.
  • 6Fan Meng, Kuang Yang. Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response [J]. JMath Anal Appl, 2004, 295 ( 1 ) : 15- 39.
  • 7Fan Meng, Wang Ke. Periodicity in a delayed ratiodependent predator-prey system [J]. J Math Anal Appl, 2001,262 ( 1 ) : 179-190.
  • 8Huo Haifeng. Periodic solutions of a semi-ratiodependent predator-prey system with functional responses [J]. Appl Math Lett, 2005,18 : 313-320.
  • 9Fan Meng, Agarwal S. Periodic solutions for a class of discrete time competition systems [J].Nonlinear Stud, 2002,9 (3):249-261.
  • 10Fan Meng, Wang Qian. Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey system [J]. Discrete Contin Dynam Sys- tems : Ser B, 2004,4 ( 3 ) : 563-574.

共引文献68

同被引文献7

  • 1Hochschild G.On the cohomology groups of an associative algebra [J].Ann. of Math., 1945,46:58-67.
  • 2Weibel C.A.An introduction to homological algebra studies in advanced mathematics [J].Cambridge,2009,38:300 - 319.
  • 3Loday J. L. Cyclic homology. Grundlehren der mathematischen wissenschaften [ M]. Appendix by Maria O.R. Berlin:Springer, 1992.
  • 4Pourabbas A.Some results on the hochschild cohomology of group algebras [ J ].Proc. Amer. Math. Soc., 2007,135 (7): 2095-2105.
  • 5Dourlens S.On the hochschild eohomology of triangular algebras [J].Comm. Algebra. ,2008,31( 10):487-493.
  • 6Hayami T. Hochsehild eohomology ring of the integral group ring of dihedral groups [ J ].Math., 2007,31 ( 1 ):99 - 127.
  • 7Doi Y. Homological coalgebra [J]. Math. Soc. Japan, 1981,33(1 ):31-51.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部