期刊文献+

目标回声分类特征的冗余性评价

Redundancy evaluation of the target echo classification feature
下载PDF
导出
摘要 对目标回声分类特征的冗余性进行评价与分析。对于2个特征维之间的冗余性,采用基于特征间线性相关系数作为冗余性度量,通过特征的相关系数矩阵分析了特征维之间的冗余度。此外,本文提出了基于特征协方差矩阵近零特征值的冗余性度量,据此可以进一步分析特征组内部的多维组合冗余。最后,利用以上2种冗余性度量,对5种目标回声分类特征各自的冗余性以及它们合并后总特征的冗余性进行了评价与分析,明确了其中的冗余关系,为目标回声分类特征的优选和组合应用提供了重要依据。 The redundancy evaluation and analysis of target echo classification feature set is studied. For the redundancy between two features, the linear correlation coefficient is used as the redundancy measure. And the feature redundancy can be analyzed via its correlation matrix. Moreover, the paper puts forward another redundancy measure which is based on the near-zero eigenvalue of the features covariance matrix. By this, we can further analyze the multi-feature redundancy within the feature subset. Then, the two before-mentioned redundancy measure are used to evaluate and analyze the redundancy of each five target echo classification feature set and the total features. And the redundancy situation between them is made clear,which provides important information for the selection and combination of the target echo classification feature set.
出处 《舰船科学技术》 2011年第12期85-88,96,共5页 Ship Science and Technology
关键词 回声特征 特征冗余 相关系数 协方差矩阵 echo feature feature redundancy correlation coefficient covariance matrix
  • 相关文献

参考文献5

  • 1吉小军,李世中,李霆.相关分析在特征选择中的应用[J].测试技术学报,2001,15(1):15-18. 被引量:27
  • 2BLUM A L, LANGLEY P. Selection of relevant features and examples in machine learning [ J ]. Artificial Intelligence, 1997,245-271.
  • 3ALIFERIS C F, TSAMARDINOS I, STATNIKOV A. HITON: A novel markov blanket algorithm for optimal variable selection[ R]. Nashville : Technical report DSL-03 -08, Vanderbilt University ,2003.
  • 4KIRA K, RENDELL L A. The feature selection problem: Traditional methods and a new algorithm [ C ]. Proceedings of Ninth National Conference on Artificial Intelligence, 1992.
  • 5李杨寰,高峰,李腾,周智敏.特征选择中信息熵的应用[J].计算机工程与应用,2009,45(15):54-57. 被引量:12

二级参考文献16

  • 1张莉,孙钢,郭军.基于K-均值聚类的无监督的特征选择方法[J].计算机应用研究,2005,22(3):23-24. 被引量:29
  • 2刘开第,薛俊锋,庞彦军.特征选择及其常用算法[J].河北建筑科技学院学报,2004,21(4):111-113. 被引量:2
  • 3张葛祥,金炜东,胡来招.基于相像系数的雷达辐射源信号特征选择[J].信号处理,2005,21(6):663-667. 被引量:23
  • 4王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12):68-71. 被引量:64
  • 5吉小军.车辆声目标模糊模式识别方法研究[M].太原:华北工学院,1993..
  • 6Kira K ,Rendell L A.The feature selection problem:Traditionalmethods and a new algorithm[C]//Tenth National Conference on Artificial Intelligence.Cambrialge:MIT Press, 1992:129-134.
  • 7Choubey S K,Deogun J S.On feature selection and effective classitiers[J].ASIS, 1998,49 ( 5 ) : 423-434.
  • 8Cohen I,Tian Q.Feature selection using principal feature analysis[C]// Proceedings of the 15th International Conference on Multimedia, 2007 : 301-304.
  • 9Aha D W,Bankert R L.A comparative evaluation of sequential feature selection algorithms[C]//Fisher D,Lenz H.5th International Workshop on Artificial Intelli gence and Statistics.New York: Springer, 1991.
  • 10Bins J,Draper B A.Feature selection from huge feature sets[C]// Proceedings of the $th IEEE Conference on Computer Vision and Pattern Recognition, 2001.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部