期刊文献+

一种基于PSO-FCM的网络虚拟环境信息推荐算法

An algorithm of information recommendation based on PSO-FCM in network virtual environments
原文传递
导出
摘要 提出一种新的基于PSO-FCM用户聚类的信息推荐算法.PSO-FCM算法结合了PSO与FCM的优点,避免了FCM算法对初始值、噪声数据敏感与PSO容易陷入局部最优等缺点.为增强聚类效果,在PSO中设计了一个基于双目标的粒子适应度评价函数,最后用标准数据集与模拟数据集对推荐算法进行实验测试.结果表明,所提的基于PSO-FCM的信息推荐算法有良好的表现. A new information recommendation algorithm based on PSO-FCM users clustering would be proposed in this paper.The PSO-FCM,i.e.Fuzzy C-Means(FCM) clustering based on particle swarm optimization(PSO),combines the respective advantages of PSO and FCM,which could prevent from those defects,for FCM to be susceptible to initial value and noisy data,and PSO to be easily falling into local optimum and so on.In order to improve clustering effect,we design the particle fitness function based on dual-objectives(intra-class distance and inter-class distance) in PSO.Finally,the standard data set and simulation data set are applied to test the personalized information recommendation algorithm based on PSO-FCM users clustering.The experimental result shows that this algorithm was of good performances.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期824-829,856,共7页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2011J01346) 福州大学科研基金资助项目(XRC-1039)
关键词 网络虚拟环境 信息推荐 用户聚类 PSO FCM network virtual environments information recommendation user clustering PSO FCM
  • 相关文献

参考文献15

  • 1Perugini S, Andr M, Fox E, et al. Recommender systems research: a connection -centric survey [ J ]. J Intell Inf Syst, 2004, 23 (2) : 107 - 143.
  • 2Changchien S W, Lee C, Hsu Y. On -line personalized sales promotion in electronic commerce [ J ]. Expert Syst Appl, 2004, 27 (1): 35-52.
  • 3Budinsky F, Decandio G, Earle R, et al. WebSphere studio overview [J]. IBM Syst J, 2004, 43 (2) : 384 -419.
  • 4Herloeker J L, Konstan J A, Riedl J. Explaining collaborative filtering recommendations [ C ]//Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work. Philadelphia: ACM, 2000: 241 - 250.
  • 5Lekakos G, Caravelas P. A hybrid approach for movie recommendation [ J ]. Multimedia Tools Appl, 2008, 36 (1/2) : 55 - 70.
  • 6Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems : a survey of the State - of - the - Art and pos- sible extensions [J]. IEEE Trans on Knowl and Data Eng, 2005, 17(6) : 734 -749.
  • 7刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:435
  • 8何波,杨武,张建勋,王越.基于用户模式聚类的智能信息推荐算法[J].计算机工程与设计,2006,27(13):2360-2361. 被引量:7
  • 9邢东山,沈钧毅,宋擒豹.从Web日志中挖掘用户浏览偏爱路径[J].计算机学报,2003,26(11):1518-1523. 被引量:87
  • 10朱兴亮,游中胜,王勇.Web用户访问路径的差异性度量方法研究[J].计算机科学,2006,33(7):104-106. 被引量:2

二级参考文献126

  • 1黎铭,薛晓冰,周志华.基于多示例学习的中文Web目录页面推荐[J].软件学报,2004,15(9):1328-1335. 被引量:17
  • 2张利彪,周春光,刘小华,马铭,吕英华,马志强.求解约束优化问题的一种新的进化算法[J].吉林大学学报(理学版),2004,42(4):534-540. 被引量:23
  • 3王晔 李德毅.自适应WEB站点的访问数据聚类方法[A]..中国人工智能进展[C].北京:清华大学出版社,2001.402-406.
  • 4Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 5Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 6梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 7Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 9Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 10Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70

共引文献701

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部