期刊文献+

基于遗传算法的查询优化算法及其在税收专业化系统中的应用研究

Research on Query Optimization Based on Genetic Algorithm and Its Application in Tax Professionalization System
下载PDF
导出
摘要 税收专业化是税收发展的必然趋势,税收专业化系统将税收工作信息化、专业化、智能化,提高了税收效率,节省了资源。随着系统数据量的日趋庞大,记录查询的结果越来越差。提出一种基于改进遗传算法的查询优化技术,改进适应税收专业化系统的编码方案,以及相对应的交叉算子、变异算子,应用于税收专业化系统时,表现出良好的性能,与一般查询方法相比,能大大提高数据查询的查全率与查准率。 Tax professionalization is a certain trend of development of global tax, which turns to be more informational, professional and intelligent. Tax professionalization system promotes efficiency and conserves resources. With the increasingly large amout of system data, the result of record query is getting worse. Puts forward a query optimization technology based on improved genetic algorithm. And proposes a new GA encoding scheme. Designs the corresponding genetic operatots and adaptive function. It works well in tax professionalization system and compared with normal query, it can enhance the recall ratio and the precision ratio.
作者 黄祖懿
出处 《现代计算机》 2011年第24期7-11,共5页 Modern Computer
关键词 税收专业化 遗传算法 查询优化 编码方案 Tax Professionalization Genetic Algorithm Query Optimization Coding Scheme
  • 相关文献

参考文献3

二级参考文献10

  • 1赵正文,康耀红,方磊坤,王国金,彭显根.信息检索中的遗传算法应用研究[J].郑州大学学报(理学版),2006,38(4):64-68. 被引量:5
  • 2[1]RICARDO B Y,BERTHIER R N.Modern information retrieval[M].New York:Pearson Education Limited,1999:36-49.
  • 3[4]ROCCHIO J J.Relevance feedback in information retrieval[M]// Salton G.The Smart Retrieval System:Experiments in Automatic Document Processing.New Jersey:Prentice Hall,1971:313-323.
  • 4[7]CHEN H C.Machine learning for information retrieval:Neural networks,symbolic learning,and genetic algorithms[J].J of the American Society for Information Science,1995,46(3):194-216.
  • 5[8]BOUGHANEM M,CHRISMENT C,TAMINE L.Genetic approach to query space exploration[J].Information Retrieval,1999,1(3):175-192.
  • 6[9]SALTON G,WONG A,YANG C S.On the specification of term values in automatic indexing[J].Journal of Documentation,1973,29(4):351-372.
  • 7[10]XU J X,CROFT W B.Improving the Effectiveness of Information Retrieval with Local Context Analysis[J].ACM Transactions on Information Systems,2000,18(1):79-112.
  • 8[11]HORNG J T,YEH C C.Applying genetic algorithms to query optimization in document retrieval[J].Information Proc and Management,2000,36(5):737-759.
  • 9张光卫,何锐,刘禹,李德毅,陈桂生.基于云模型的进化算法[J].计算机学报,2008,31(7):1082-1091. 被引量:127
  • 10贺宏朝,何丕廉,高剑峰,黄昌宁.一种基于上下文的中文信息检索查询扩展[J].中文信息学报,2002,16(6):32-37. 被引量:25

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部