期刊文献+

驻涡燃烧室发散冷却方案试验 被引量:6

Experimental investigation on transpiration cooling of trapped vortex combustor
原文传递
导出
摘要 设计了两种适用于驻涡燃烧室的发散冷却结构,发散孔的倾角分别为30°和150°,并通过试验研究了两种冷却结构在不同位置处,不同温比及吹风比条件下的冷却效果.试验结果表明,两种冷却结构均具有较高的绝热效率;两种结构的绝热效率随主流温度或吹风比的变化规律相同;凹腔前壁面的绝热效率最高,后壁面的绝热效率最低;在相同试验条件下,倾角150°冷却结构的绝热效率高于倾角30°冷却结构的绝热效率;随着冷却气量的减小,两者之间的差距逐渐增大.最后,通过数值计算方法对试验结果进行了分析. Two kinds of transpiration cooling schemes of trapped vortex combustor were designed,and two angles of transpiration cooling holes were 30 ° and 150 °.The cooling efficiency test was conducted to study the performance of cooling in different locations,different temperature ratios and blowing ratios.The experimental results show that two cooling structures have high cooling efficiency;and the cooling efficiency variation with mainstream temperature or blowing ratio is similar to each other.For the wall of cavity,the cooling efficiency of fore-wall is the highest and the cooling efficiency of after-wall is the lowest.Under the same experimental conditions,the cooling efficiency of the structure at angle 150 ° is higher than that of the structure at angle 30 °.At the same time,with the decline of cooling gas rate,the difference between them will increase.Finally,the test results were analyzed by numerical methods.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2011年第12期2667-2675,共9页 Journal of Aerospace Power
关键词 驻涡燃烧室 发散冷却 主流温度 吹风比 绝热效率 trapped vortex combustor transpiration cooling mainstream temperature blowing ratio cooling efficiency
  • 相关文献

参考文献11

  • 1Hsu K Y, Goss L P, Trump D D. Performance of a trapped-vortex combustor[R]. AIAA 95-0810,1995.
  • 2Roquemore W M, Shousese D T, Burrus D R, et al. Trapped vortex combustor concept for gas turbine engines [R]. AIAA 2001-0483,2001.
  • 3Straub D L,Casleton K H,Lewis R E,et al. Assessment of rich-burn,quiek-mix,lean-burn trapped vortex combustor for stationary gas turbines[J]. ASME J. Eng. Gas Tur- bines Power, 2005,127(1) : 36-41.
  • 4Brankovic A,Ryder R. Emissions prediction and measure- ment for liquid fueled TVC combustor with and without water iniection[R]. AIAA 2005-0215,2005.
  • 5Mehta J M,Shouse D, Cox B,et al. Innovative SiC SiC ce ramic liner for the trapped votex combustor concept[R]. AIAA 2004-689,2004.
  • 6Mancilla P C, Charka P, Acharya S, et al. Performance of a trapped vortex spray combustor [R]. ASME 2001 GT 0058,2001.
  • 7张荣春,樊未军,邢菲.涡轮级间单涡燃烧室壁温研究[J].航空动力学报,2010,25(7):1512-1517. 被引量:7
  • 8Champion J L, Deshaies B. Experimental investigation of the wall flow and cooling of combustion chamber walls [R]. AIAA 95-2498,1995.
  • 9胡娅萍,吉洪湖.孔阵排列疏密度对致密多孔壁冷却效果的影响[J].推进技术,2005,26(1):28-33. 被引量:18
  • 10胡娅萍,吉洪湖.致密多孔壁冷流入射角对冷却效果影响的数值研究[J].航空动力学报,2005,20(1):116-119. 被引量:9

二级参考文献28

共引文献43

同被引文献72

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部