摘要
A novel heat transfer coefficient sensor is introduced and the design,manufacture,and calibration are described.The intended application of this instrument was on a high rotational speed test disc.In the experiments,the heat transfer coefficient sensor was calibrated under static state and rotational state respectively.The calibration under the static state was accomplished in a pipe: the inside diameter(ID) was 0.048m and the total length was 4m,the distance between the sensor and the inlet of the pipe was 3.5m;the standard value was measured using a self-made calibrator.The calibration under the rotational state was accomplished using a rotating disc: the diameter and thickness of the stainless disc were 800mm and 25mm,respectively;the sensor was installed at the location of r=250mm;the rotating disc driven by a 30kW direct current motor can supply the maximum rotational speed of 3000r/min.The standard value under rotational state was provided by an approximate empirical formula.The results show that the designed sensor can measure heat transfer coefficient directly under rotational state and static state with good accuracy and stability;the correlation factor of K are constant under static state and rotational state.
A novel heat transfer coefficient sensor is introduced and the design,manufacture,and calibration are described.The intended application of this instrument was on a high rotational speed test disc.In the experiments,the heat transfer coefficient sensor was calibrated under static state and rotational state respectively.The calibration under the static state was accomplished in a pipe: the inside diameter(ID) was 0.048m and the total length was 4m,the distance between the sensor and the inlet of the pipe was 3.5m;the standard value was measured using a self-made calibrator.The calibration under the rotational state was accomplished using a rotating disc: the diameter and thickness of the stainless disc were 800mm and 25mm,respectively;the sensor was installed at the location of r=250mm;the rotating disc driven by a 30kW direct current motor can supply the maximum rotational speed of 3000r/min.The standard value under rotational state was provided by an approximate empirical formula.The results show that the designed sensor can measure heat transfer coefficient directly under rotational state and static state with good accuracy and stability;the correlation factor of K are constant under static state and rotational state.
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2011年第12期2684-2690,共7页
Journal of Aerospace Power