期刊文献+

热喷涂纳米陶瓷层单向荷载应力分布有限元分析

Finite Element Analysis of Stress Distribution of Thermally Sprayed Nanostructured Ceramic Coating under Unidirectional Load
下载PDF
导出
摘要 为了探讨陶瓷涂层的微观结构(孔隙及裂纹)对涂层断裂特性的影响,采用大气等离子喷涂技术制备了纳米Al2O3/TiO2陶瓷层。以有限元分析软件模拟了纳米结构陶瓷涂层在单向载荷作用下的应力分布,采用扫描电子显微镜(SEM)研究了其微观结构、内部存在的孔隙和裂纹等缺陷,将涂层的缺陷简化为大、中、小孔隙及裂纹,建立了涂层截面二维有限元模型,探讨了涂层受到单向荷载作用时的变形及等值应力分布。结果显示:涂层的小孔隙对应力分布影响不大,相邻孔隙的等值应力会发生叠加;涂层中孔隙的角度分布及孔隙距离对最大等值应力有影响,等值应力最大处最有可能产生裂纹。 Nanostructured Al2O3/TiO2 ceramic coating was prepared by air plasma spraying.The stress distribution in as-sprayed ceramic coating under unidirectional load was investigated using finite element analysis.The microstructure as well as internal pores and cracks was observed using a scanning electron microscope.The defects in the coating were simplified and classified into pores with a large size,medium size and small size as well as cracks,and then two-dimensional finite element model of the cross-section of the coating was established.The deformation and equivalent stress distribution of the coating under unidirectional load were analyzed.It was found that the small pores in the coating had little effect on the stress distribution,and the equivalent stress of adjacent pores was overlapped.Besides,the angle distribution and spacing of the pores had effect on the maximum equivalent stress,and cracks were liable to emerge at the locations with the maximum equivalent stress.
出处 《材料保护》 CAS CSCD 北大核心 2012年第1期10-12,77,共3页 Materials Protection
关键词 纳米陶瓷层 大气等离子喷涂 单向荷载 应力分布 有限元分析 nanostructured ceramic coating air plasma spraying unidirectional load stress distribution finite element analysis
  • 相关文献

参考文献10

二级参考文献59

  • 1张显程,徐滨士,王海斗,吴毅雄.ZrO_2/NiCoCrAlY功能梯度涂层残余应力分析[J].材料热处理学报,2005,26(2):86-89. 被引量:22
  • 2刘英才,尹衍升,王昕,张景德.Fe-Al/Al_2O_3梯度涂层制备过程中的热机械行为[J].航空材料学报,2005,25(3):5-10. 被引量:9
  • 3陶光勇,郑子樵,刘孙和.W/Cu梯度功能材料板稳态热应力分析[J].中国有色金属学报,2006,16(4):694-700. 被引量:11
  • 4Goberrnan D, Sohn Y H, Shaw L, et al. Microstructure development of Al2O3-13wt% TiO2 plasma sprayed coatings derived from nanocrystalline powders [J]. Acta Materialia, 2002, 50(5) : 1141 - 1152.
  • 5Bansal P, Padture N P, Vasiliev A, et al. Improved interfaeial mechanical properties of Al2O3-13wt% TiO2 plasma-sprayed coatings derived from nanocrystalline powders[J]. Acta Materialia, 2003, 51(10, 11) : 2959 - 2970.
  • 6Lima R S, Moreau C, Marple B R. HVOF-sprayed coatings engineered from mixtures of nanostructured and submicron Al2O3-TiO2 powders: An enhanced wear performance[J]. Journal of Thermal Spray Technology, 2007, 16(5 - 6) : 866 - 872.
  • 7Lima R S, Marple B R. Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: A review[ J]. Journal of Thermal Spray Technology, 2007, 16(1): 40- 63.
  • 8Wang Y, Tian W, Yang Y. Thermal shock behavior of nanostructured and conventional Al2O3/13 wt% TiO2 coatings fabricated by plasma spraying[J]. Surface and Coatings Technology, 2007, 201(18): 7746- 7754.
  • 9Sa' nchez E, Bannier E, Cantavella V, et al. Deposition of Al2O3 -TiO2 nanostructured powders by atmospheric plasma spraying[ J]. Journal of Thermal Spray Technology, 2008, 17(3): 329- 337.
  • 10Wang Y, Jiang S, Wang M D, et al. Abrasive wear characteristics of plasma sprayed nanostructured aluminar/titania coatings[J]. Wear, 2000, 237(2) : 176- 185.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部