期刊文献+

一类脉冲免疫SIR传染病模型的无病τ周期解的存在性与稳定性

Existence and Stability of Infection-free Periodic Solutions to Impulsively Vaccinating SIR Epidemic Model
下载PDF
导出
摘要 在脉冲免疫接种条件下,利用频闪映射的离散动力系统、Floquet乘子理论和脉冲微分方程比较定理,讨论一类具有阶段结构和Logistic死亡率的脉冲免疫接种SIR传染病模型,得到系统的无病τ周期解以及无病τ周期解的存在性和全局渐近稳定性的充分条件. An SIR epidemic model with generalized logistic death rate and stage structured was established.Using the discrete dynamical system determined by the stroboscopic map,an infection free periodic solution of the model under impulsive vaccination was obtained.Based on Floquet theory and the comparison theorem of impulsive differential equation,the analysis of global asymptotic stability of the infection free periodic solution was illustrated.
机构地区 广西师范大学
出处 《广西科学院学报》 2011年第4期294-298,302,共6页 Journal of Guangxi Academy of Sciences
基金 国家自然基金项目(10961005)资助
关键词 脉冲方程 免疫接种 SIR模型 全局渐近稳定性 τ周期解 impulsive differential equations impulsive vaccination SIR model global asymptotic stability τ periodicsolution
  • 相关文献

参考文献8

二级参考文献28

  • 1庞国萍,陶凤梅,陈兰荪.具有饱和传染率的脉冲免疫接种SIRS模型分析[J].大连理工大学学报,2007,47(3):460-464. 被引量:10
  • 2MENG Xin-zhu, CHEN Lan-sun. Global Dynamical Behaviors for an SIR Epidemic Model with Time Delay and Pulse Vaccination [ J ]. Taiwan Residents Journal of Mathematics, 2008, 12 ( 5 ) : 1107-1122.
  • 3MENG Xin-zhu, CHEN Lan-sun. The Dynamics of a New SIR Epidemic Model Concerning Pulse Vaccination Strategy [ J ]. Applied Mathematics and Computation, 2008, 197 (2) : 582-597.
  • 4D'Onofrio A. Stability Properties of Pulse Vaccination Strategy in SEIR Epidemic Model [ J]. Mathematical Biosciences, 2002, 179( 1 ) : 57-72.
  • 5Gao L Q, Mena-Lorca J, Hethcote H W. Four SEI Endemic Models with Periodicity and Separatrices [ J]. Mathematical Biosciences, 1995, 128(1/2): 157-184.
  • 6Mena-Lorca J, Hethcote H W. Dynamic Models of Infectious Diseases as Regulators of Population Sizes [ J]. Journal of Mathematical Biology, 1992, 30 ( 7 ) : 693-716.
  • 7AGUR Z,COJOCARU L,MAZOR G. Pulse mass measles vaccination across age cohorts [J]. Proc Natl Acad Sci USA, 199:3,90:11698-11702.
  • 8D' ONOFRIO A. Stability properties of pulse vaccination strategy in SEIR epidemic model [J]. Math Biosci, 2002,179: 57- 72.
  • 9SHULGIN B, STONE L, AGUR Z. Pulse vaccination strategy in the SIR epidemic model [J]. Bull Math Biol, 1998,60, 1123- 1148.
  • 10KERMACK WO, MCKENDRICK A. Contributions to the mathematical theory of epidemics [J]. Proc Roy Soc A, 1927, 115:700-721.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部