摘要
在脉冲免疫接种条件下,利用频闪映射的离散动力系统、Floquet乘子理论和脉冲微分方程比较定理,讨论一类具有阶段结构和Logistic死亡率的脉冲免疫接种SIR传染病模型,得到系统的无病τ周期解以及无病τ周期解的存在性和全局渐近稳定性的充分条件.
An SIR epidemic model with generalized logistic death rate and stage structured was established.Using the discrete dynamical system determined by the stroboscopic map,an infection free periodic solution of the model under impulsive vaccination was obtained.Based on Floquet theory and the comparison theorem of impulsive differential equation,the analysis of global asymptotic stability of the infection free periodic solution was illustrated.
出处
《广西科学院学报》
2011年第4期294-298,302,共6页
Journal of Guangxi Academy of Sciences
基金
国家自然基金项目(10961005)资助
关键词
脉冲方程
免疫接种
SIR模型
全局渐近稳定性
τ周期解
impulsive differential equations
impulsive vaccination
SIR model
global asymptotic stability
τ periodicsolution