期刊文献+

向量内积策略的多支持度正负关联规则挖掘 被引量:1

Study on mining positive and negative association rules based on vector inner product
下载PDF
导出
摘要 在研究负关联规则相关特性的基础上,将向量内积引入到该领域,提出了一种基于向量内积的多最小支持度正负关联规则挖掘算法。考虑到事务数据库中各项集分布不均而导致的单一最小支持度难以设定的问题,采用了多最小支持度策略,设计了一种能同时挖掘出频繁与非频繁项集,以及从这些项集中挖掘出正负关联规则的算法。实验结果表明,该算法仅需扫描一次数据库,且具有动态剪枝,不保留中间候选项和节省大量内存等优点,对事务数据库中负关联规则的挖掘具有重要意义。 Studying on the characteristic of negative association rules,this paper introduces vector inner product to this field, and puts forward a new algorithm to mining positive and negative association rules with multiple minimum supports based on vector inner product.Considering the inhomogeneous distribution of each itemset in transaction database,which may lead to the single minimum support is difficult to be set,it designs an algorithm that can mine frequent and infrequent itemsets,and mine positive and negative association rules from these itemsets with multiple minimum supports.Experimental results show that this method not only scans the database only once,but also has virtues such as pruning dynamically,without saving mid items,and saving lots of memories,which is important to the negative association rule mining in transaction database.
作者 刘彩虹 刘强
出处 《计算机工程与应用》 CSCD 北大核心 2011年第36期162-165,189,共5页 Computer Engineering and Applications
关键词 数据挖掘 负关联规则 频繁项集 非频繁项集 data mining negative association rules frequent itemsets infrequent itemsets
  • 相关文献

参考文献11

  • 1Agrawal R.Database mining: a performance perspective[J].lEEE Trans on Knowledge and Data Engineering,1993,5(6).
  • 2Brin S, Motwani R, Silverstein C.Beyond market: generalizing as- sociation rules to correlations[C]//Processing of the ACM SIG- MOD Conference, 1997: 265-276.
  • 3Savasere A, Omiecinski E, Navathe S.Mining for strong negative associations in a large database of customer transaction[C]//Pro- ceedings of the 1998 International Conference on Data Engineer- ing, 1998 : 494-502.
  • 4Wu Xindong,Zhang Chengqi,Zhang Shichao.Mining both posi- tive and negative association rules[C]//Proeeedings of the 19th International Conference on Machine Learning, 2002 : 658-665.
  • 5董祥军,宋瀚涛,姜合,陆玉昌.基于最小兴趣度的正、负关联规则挖掘[J].计算机工程与应用,2004,40(27):24-25. 被引量:12
  • 6董祥军,王淑静,宋瀚涛.基于两级支持度的正、负关联规则挖掘[J].计算机工程,2005,31(10):16-18. 被引量:19
  • 7Liu B,Hsu W,Ma Y.Mining association rules with multiple mini- mum supports[C]//Proceedings of the ACM SIGKDD Conference,1999:337-341.
  • 8张倩,王治和,张国治.基于相关系数的正、负关联规则挖掘算法[J].陕西理工学院学报(自然科学版),2005,21(4):35-38. 被引量:9
  • 9刘以安,刘强,邹晓华,王士同.基于向量内积的关联规则挖掘算法研究[J].计算机工程与应用,2006,42(21):172-174. 被引量:15
  • 10Han Jia-wei,Kambr M.Data mining concepts and techniques[M]. Beijing:Higher Education Press,2001:255-279.

二级参考文献29

  • 1卢景丽,徐章艳,刘美玲,区玉明.一种改进的负关联规则挖掘算法[J].广西师范大学学报(自然科学版),2004,22(2):41-46. 被引量:8
  • 2皮德常,秦小麟,王宁生.基于动态剪枝的关联规则挖掘算法[J].小型微型计算机系统,2004,25(10):1850-1852. 被引量:16
  • 3董祥军,宋瀚涛,姜合,陆玉昌.基于最小兴趣度的正、负关联规则挖掘[J].计算机工程与应用,2004,40(27):24-25. 被引量:12
  • 4G Piatetsky Shapiro. Discovery, analysis, and presentation of strong rules[C].In:G Piatetsky Shapiro,W Frawley eds. Knowledge discovery in Databases,AAAI Press/MIT Press,1991:229~248
  • 5S Brin ,R Motwani ,C Silverstein.Beyond Market :Generalizing Association Rules to Correlations[C].In:Processing of the ACM SIGMOD Conference, 1997: 265~276
  • 6A Savasere,E Omiecinski,S Navathe. Mining for Strong Negative Associations in a Large Database of Customer Transaction[C].In:Proceedings of the 1998 International Conference on Data Engineering, 1998:494~502
  • 7X Wu,C Zhang,S Zhang. Mining Both Positive and Negative Association Rules[C].In:Proceedings of the 19th International Conference on Machine Learning(ICML-2002),The University of New South Wales,Sydney, Austrilia, 2002: 658~665
  • 8C Zhang,S Zhang. Association Rule Mining[M].LNAI 2307 , Springer Verlag Berlin Heidelberg 2002,2002:47~84
  • 9J F Boulicaut,A Bykowski,B Jeudy. Towards the Tractable Discovery of Association Rules with Negations[C].In :Proceedings of the Fourth International Conference on Flexible Query Answering Systems FQASO0,Warsaw (PL) ,2000:425~434
  • 10Park J S,Chen M S,Yu P S.An effective hash based algorithm for mining association rules[C].In:ACM SIGMOD International Conference Management of Data,1995:175~186

共引文献45

同被引文献14

  • 1刘以安,刘强,邹晓华,王士同.基于向量内积的关联规则挖掘算法研究[J].计算机工程与应用,2006,42(21):172-174. 被引量:15
  • 2黄名选,陈燕红,张师超.基于关联规则挖掘的查询扩展模型研究[J].现代图书情报技术,2007(10):47-51. 被引量:7
  • 3Jing Yufeng,Bruce C. An association thesaurus for information Retrieval[A].United States:ACM,1994.146-160.
  • 4Xu J,Bruce C. Query expansion using local and global document analysis[A].United States:ACM,1996.4-11.
  • 5Fonseca B M,Golgher P B,Moura E S. Discovering search engine related query using association rules[J].Journal of Web Engineering,2004,(04):215-227.
  • 6Zhang Chengqi,Qin Zhenxing,Yan Xiaowei. Association-based segmentation for chinese-crossed query expansion[J].IEEE Intell Inform Bull,2005,(01):18-25.
  • 7Cui Hang,Wen Jirong,Nie Jianyun. Query expansion by mining user logs[J].IEEE Transactions on Knowledge and Data Engineering,2003,(04):829-839.doi:10.1109/TKDE.2003.1209002.
  • 8Brin S,Motwani R,Silverstein C. Beyond market baskets:generalizing association rules to correlations[A].United States:ACM,1997.265-276.
  • 9Savasere A,Omiecinski E,Navathe S. Mining for strong negative associations in a large database of customer transaction[A].United States:IEEE Comp Soc,1998.494-502.
  • 10Wu Xindong,Zhang Chengqi,Zhang Shichao. Mining of both positive and negative association rules[J].ACM Transactions on Information Systems,2004,(03):381-405.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部