期刊文献+

基于视觉注意的SVM彩色图像分割方法 被引量:7

SVM model for segmentation of color image based on visual attention
下载PDF
导出
摘要 提出一种基于视觉注意的自然场景彩色图像支持向量机(Support Vector Machine,SVM)分割方法。基于人类视觉注意机制将图像进行预分割,得到图像的显著区域和非显著区域,利用形态学操作对得到的图像进行处理,并自动选取和标注SVM的训练样本,用训练后的SVM分类器对整幅图像进行分割。该方法充分利用视觉注意机制方法的有效信息,解决了其边界不确定的缺陷,并且结合具有很好泛化性能的SVM学习方法,在无需先验知识以及任何人工干预的情况下,实现对自然场景图像的分割。为验证算法的有效性,分别从加州大学伯克利分校图像数据库及互联网选取多幅彩色图像进行实验,实验结果表明:该方法的分割结果不仅与人类视觉注意结果相一致,而且与伯克利图像数据库中人工标注结果相比,得到较好分割效果。 An SVM(Support Vector Machine) model for the segmentation of color images of natural scenes based on visual attention is proposed.Based on human visual attention mechanism,the image is pre-divided,and saliency and non-saliency areas are obtained.The pre-divided image is further processed by some operators of morphology such that the training samples for SVM can be chosen and labeled automatically.The whole image is divided by SVM classifier.The proposed approach can solve the problem of uncertain boundary through effective information of the image based on visual attention mechanism. Combined with SVM,the approach can cut the image well without any priori knowledge and manual intervention.To evaluate the performance of the presented approach,some experiments on several images from the image dataset of University of California at Berkeley and Internet are accomplished.The experimental results demonstrate that not only the segmentations are consistent with the habits of the human visual attention,but also the proposed approach can obtain good segmentation results comparing with that of manual labeled.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第36期174-176,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60975035 No.71031006) 教育部博士点基金项目(No.20091401110003) 山西省自然科学基金(No.2009011017-2) 山西省回国留学人员科研资助项目(No.2008-14)
关键词 图像分割 支持向量机 视觉注意 显著图 image segmentation support vector machine visual attention saliency map
  • 相关文献

参考文献15

  • 1林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 2Yang Chen-Kuei,Tsai Wen-Hsiang.Reduction of color space di- mensionality by moment preserving thresholding and its applica- tion for edge detection in color images[J].Pattem Recognition Let- ters, 1996,17(5) :481-490.
  • 3Ohlander R,Price K,Reddy D R.Pictttre segmentation using a recursive region splitting method[J].Computer Graphics and Im- age Processing, 1978,8(3) :313-333.
  • 4Zahid N, Limouri M, Essaid A.A new cluster-validity for fuzzy clustering[J].Pattem Recognition, 1999,32(7) : 1089-1097.
  • 5Tremeau A, Borel N.A region growing and merging algorithm to color segmentation[J].Pattem Recognition, 1997,30( 7 ) : 1191 - 1203.
  • 6Fan J,Aref W G,Hacid M S,et al.An improved automatic iso- tropic color edge detection technique[J].Pattern Recognition Let- ters, 2001,22(13) : 1419-1429.
  • 7Ong S H,Yeo N C,Lee K H,et al.Segrnentation of color imag- es using a two-stage self-organizing network[J].Image and Vision Computing, 2002,20 (4) : 279-289.
  • 8窦智宙,平子良,冯文兵,王永祥.多分类支持向量机分割彩色癌细胞图像[J].计算机工程与应用,2009,45(20):236-239. 被引量:8
  • 9赵宏伟,王慧,刘萍萍,戴金波.有指向性的视觉注意计算机模型[J].计算机研究与发展,2009,46(7):1192-1197. 被引量:2
  • 10曾智勇,张学军,崔江涛,周利华.基于显著兴趣点颜色及空间分布的图像检索新方法[J].光子学报,2006,35(2):308-311. 被引量:21

二级参考文献40

共引文献348

同被引文献67

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部