期刊文献+

GROUP CONTINGENCY TEST FOR TWO OR SEVERAL INDEPENDENT SAMPLES

GROUP CONTINGENCY TEST FOR TWO OR SEVERAL INDEPENDENT SAMPLES
原文传递
导出
摘要 This paper proposes a new and distribution-free test called "Group Contingency" test (GC, for short) for testing two or several independent samples. Compared with traditional nonparametric tests, GC test tends to explore more information based on samples, and it's location-, scale-, and shapesensitive. The authors conduct some simulation studies comparing GC test with Wilcoxon rank sum test (W), Kolmogorov-Smirnov test (KS) and Wald-Wolfowitz runs test (WW) for two sample case, and with Kruskal-Wallis (KW) for testing several samples. Simulation results reveal that GC test usually outperforms other methods.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第6期1183-1192,共10页 系统科学与复杂性学报(英文版)
基金 This research is supported-by the National Natural Science Foundation of China under Grant No. 10731010 and Ph.D. Program Foundation of Ministry of Education of China under Grant No. 20090001110005.
关键词 Clustering group contingency test nonparametric test 独立样本 气相色谱法 运行测试 非参数检验 试验 秩和检验 堪萨斯州 仿真结果
  • 相关文献

参考文献9

  • 1Erich L. Lehmann, Parametric versus nonparametrics: Two alternative methodologies, Journal of Nonparametric Statistics, 2009, 21(4): 397-405.
  • 2M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods, 2nd ed., Wiley, New York, 1999. P. Sprent and N. C. Smeeton, Applied Nonparametric Statistical Methods, 3rd edition, Chapman and Hall/CRC, Boca Raton, Florida, 2001.
  • 3P. Sprent and N. C. Smeeton, Applied Nonparametric Statistical Methods, 3rd-edition, Chapman and Hall/CRC, Boca Raton, Florida, 2001.
  • 4A. Wald and J. Wolfowitz, On a test whether two samples are from the same population, Ann. Math. Stat., 1940, 11(2): 147-162.
  • 5C. R. Mehta and Nitin R. Patel, A network algorithm for performing fisher's exact test in r × c contingency table test, Journal of the American Statistical Association, 1983, 78(382): 427-434.
  • 6G. J. Gan, C. Q. Ma, and J. H. Wu, Data Clustering: Theory, Algorithms, and Applications, SIAM, Society for Industrial and Applied Mathematics, 2007.
  • 7J. B. MacQueen, Some methods for classification and analysis of multivariate observations, Proceed- ings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1967.
  • 8C. R. Magela and S. H. Wibowo, Comparing the powers of the Wald-Wolfowitz and Kolmogorov- Smirnov tests, Biometrical Journal, 1997, 39(6): 665-675.
  • 9J. M. Chambers, Software for Data Analysis: Programming with R (Statistics and Computing), Springer, 2008.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部