期刊文献+

非交换弱Orlicz空间上τ-可测算子的Hardy-Littlewood极大函数的不等式

Hardy-Littlewood Maximal Function Inequalities of τ-measurable Operators in Noncommutative Weak Orlicz Space
下载PDF
导出
摘要 首先给出了非交换弱Orlicz空间范数,然后得到了相关的非交换弱LP空间中的不等式,最后得到了τ-可测算子的Hardy-Littlewood极大函数的弱平均不等式和非交换弱Orlicz空间范数不等式. This paper presents noncommutative weak Orlicz space norm,then we obtains relevant inequalities in noncommutative weak LP space.Finally,we present weak average inequality of Hardy-Littlewood maximal function of τ-measurable operators and inequality of noncommutative weak Orlicz space norm.
出处 《新疆大学学报(自然科学版)》 CAS 2011年第4期426-432,共7页 Journal of Xinjiang University(Natural Science Edition)
基金 国家自然科学基金(11071204)
关键词 von NEUMANN代数 τ-可测算子 HARDY-LITTLEWOOD极大函数 非交换弱Orlicz空间 Von Neumann algebra τ-measurable operator Hardy-Littlewood maximal function noncommunative weak Orlicz space.
  • 相关文献

参考文献8

  • 1Bekjan T N. Hardy-Littlewood maximal funcyion of r-measurable operators[J]. J Math Anal Appl, 2006, 322: 87-96.
  • 2JIAO Yong-yao,Bekjan T. N. ~-Inequalities of Hardy-Littlewood maximal function of ~--measurable operators[J]. Journal of Xingjiang University, 2009,26(3):311-316.
  • 3Fack T, Kosaki H. Generalized s-numbers off-measure operators[J]. Pacific J Math, 1986, 123: 269-300.
  • 4Nelson E. Notes on non-commutative integration[J]. J Funct Anal, 1974, 15: 103-116.
  • 5Dodds P D, Dodds T K, Pager B de. Noncommutative Banach function space[J]. Math Z, 1989, 201: 583-587.
  • 6Xu Q. Analytic functions with values in lattices and symmetric space of measurable operators[J]. Math Proc Cambridge Philos soc, 1991, 109: 541-563.
  • 7Long R. A property of convex functions[J]. Kexue Tongbao, 1982, 27: 641-642.
  • 8Liu p. Martingale and Geometry of Banach space[M]. BeiJing: Science Press, 2007.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部