期刊文献+

基于神经网络的聚类方法研究 被引量:3

Research on Clustering Method Based on Neural Network
下载PDF
导出
摘要 针对常用聚类方法不能有效处理噪声数据的问题,本文结合神经网络具有自适应性的特点,提出基于神经网络的聚类(NN_Cluster)模型,并设计了基于自适应共振理论的神经网络聚类模型(ARTNN_Cluster)和基于自组织特征映射的神经网络聚类模型(SOMNN_Cluster)。标准数据集上的实验结果表明,与传统的K_means聚类方法相比,本文提出的基于神经网络的聚类模型有效地克服了传统方法的噪声问题,得到了较好的聚类效果。 This paper presents a clustering model based on neural network(NN_Cluster) combining the self adaptive feature of neural network,in order to solve the noise data of clustering.Then design two clustering algorithms based on adaptive resonance theory neural network(ARTNN_Cluster) and self-organizing feature map neural networks(SOMNN_Cluster).Simulation results on UCI datasets demonstrate that comparing with traditional K_means clustering means,the NN_Cluster effectively overcome the noise of traditional clustering methods and the better clustering results are obtained by this model.
作者 胡伟
出处 《微计算机信息》 2012年第1期159-160,144,共3页 Control & Automation
关键词 神经网络 聚类 自适应共振理论 自组织特征映射 噪声 Neural network Clustering Adaptive resonance theory Self-organizing feature map Noise
  • 相关文献

参考文献5

二级参考文献51

  • 1倪巍伟,孙志挥,陆介平.k-LDCHD——高维空间k邻域局部密度聚类算法[J].计算机研究与发展,2005,42(5):784-791. 被引量:18
  • 2陈良维.数据挖掘中聚类算法研究[J].微计算机信息,2006(07X):209-211. 被引量:32
  • 3P. S. Bradley and U. M. Fayyad, "Refining initial points for K- means clustering", Proceedings of the Fifteenth International Conference on Machine Learning (ICML98), 1998, pp. 91-99.
  • 4The Analysis of a Simple K-Means Algorithm. T. Kanungo, D. M. Mount, N.S. Netanyahu, C. Piatko, R. Silverman and A.Y. Wu. 2000.
  • 5R. Kannan, S. Vempala, and Adrian Vetta, "On Clusterings: Good, Bad, and Spectral", Proc. of the 41st Foundations of Computer Science, Redondo Beach, 2000.
  • 6S. Kantabutra, Efficient Representation of Cluster Structure in Large Data Sets, Ph.D. Thesis, Tufts University, Medford, MA, September 2001.
  • 7Ester M, et al. A density-based algorithm for discovering clusters in large spatial databases with noise [C]//Proc of the 2nd Int Conf on Knowledge Discovering in Databases and Data Mining(KDD96). Menlo Park, CA: AAA I Press, 1996.
  • 8Berkhin P. Survey of clustering data mining techniques [R] //San Jose, CA: Accrue Software, 2002.
  • 9Xu R, Wunsch D II. Survey of clustering algorithms [J]. IEEE Trans on Neural Networks, 2005, 16(3): 645-678.
  • 10Sander.J, Ester M, Kriegel H P, et al. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications [J]. Data Mining and Knowledge Discovery, an lnternatlonal Journal, 1998, 2(2): 169-194.

共引文献287

同被引文献24

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部