期刊文献+

具非线性脉冲时滞的Lasota-Wazewska模型概周期解的存在性与稳定性 被引量:2

Existence and Stability of Almost Periodic Solutions for Nonlinear Impulsive Lasota-Wazewska Model
下载PDF
导出
摘要 利用压缩映射原理,研究具有非线性脉冲的Lasota-Wazewska模型的概周期解,获得该系统概周期解存在与指数稳定的充分条件. The nonlinear impulsive Lasota-Wazewska model was analyzed according to the fixed point theorem of contraction mapping principle.Some sufficient conditions for the existence and exponential stability of almost periodic solutions were obtained.
作者 柏琼 冯春华
机构地区 广西师范大学
出处 《广西科学》 CAS 2011年第4期329-332,共4页 Guangxi Sciences
基金 国家自然科学基金项目(10961005)资助
关键词 Lasota-Wazewska模型 非线性脉冲 概周期解 指数稳定性 压缩映射原理 Lasota-Wazewska model nonlinear impulsive almost periodic solution exponential stability fixed point theorem
  • 相关文献

参考文献9

  • 1Yang Z,Xu D. Existence and exponential stability of pe- riodic solution for impulsive delay differential equations and applications [J]. Nonlinear Anal (TMA), 2006, 64 (1) : 130-145.
  • 2Liu X,Li G,Luo G. Positive periodic solution for a two- species ratio-dependent predator-prey system with time delay and impulse[J]. J Math Anal Appl, 2007,325 ( 1 ): 715-723.
  • 3Stamov G T, Alzabut J O, Atanasov P,et al. Almost pe- riodic solutions for an impulsive delay model of price fluctuations in commodity market[J]. Nonlinear Analysis: Real World Applications,2011,12(6) : 3170-3176.
  • 4Xia Y H,Cao J D, Huang Z K. Existence and exponential stability of almost periodic solution for shunting inhibi- tory cellular neural networks with impulses[J]. Chaos Solitons and Fractals,2007,34(5): 1599-1607.
  • 5Zhang H Y,Xia Y H. Existence and exponential stability of almost periodic solution for Hopfield-type neural net- works with impulse[J]. Chaos, Solitons and Fractals, 2008,37 (4) : 1076-1082.
  • 6Stamov G T. On the existence of almost periodic solutions for the impulsive Lasota-Wazewska model[J]. Ap- plied Mathematics Letters,2009,22(4) : 516-520.
  • 7Samoilenko A M, Perestyuk N A. Differential equations with impulse effect[M]. Kiev : Vista Skola, 1987.
  • 8Lakshmikantham V,Bainov D D, Simeonov P S. Theory of impulsive differential equations[M]. Singapore N J, London :World Scientific, 19 8 9.
  • 9Samoilenko A M,Perestyuk N A. Differential equations with impulsive effect[M]. Singapore: World Scientific, 1995.

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部