期刊文献+

应用CUSUM和EWMA模型探测甲型H1N1流感流行起始的预警研究 被引量:9

Study on early detection of the onset of the epidemic of pandemic H1N1 2009, using CUSUM and EWMA
原文传递
导出
摘要 目的探讨累计和(CUSUM)和指数加权移动平均(EWMA)模型探测甲型H1N1流感流行起始的功效。方法利用北京市2009年流感样病例监测数据,分别采用CUSUM和EWMA模型对数据进行分析,与流感病原学监测数据进行对比,分析了不同参数组合下2种模型探测甲型H1N1流感流行起始的效果。结果流感病原学监测显示2009年北京市甲型H1N1流感流行的起始时间为第41周,而CUSUM和EWMA模型均能在第42周之前发出预警信号;参数不同,CUSUM和EWMA模型的预警功效亦不同。结论CUSUM和EWMA模型参数值与其预警功效有关,CUSUM和EWMA模型可用于探测甲型H1N1流感流行的起始。 Objects To explore the efficiency of Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average (EWMA) for detecting the onset of the epidemic of pandemic H1N1 2008. Methods Influenza like-illness (ILl) surveillance data was analyzed to detect the onset week of the epidemic of pandemic HIN1 2009, using the model of CUSUM and EWMA. The results were compared with the gold standard at different combination of parameter values. Results The 41st week was considered as onset of the epidemic of pandemic H1N1 2009 according to the gold standard based on the results from influenza virologic surveillance data. Both CUSUM and EWMA triggered the signal before the 42nd week. Differences in performances were observed as parameter values changed. Conclusions The parameter values of CUSUM and EWMA had a correlation to their performances. CUSUM and EWMA could be used for detecting the on- set of the epidemic of pandemic H1N1 2008.
出处 《国际病毒学杂志》 2011年第6期187-190,共4页 International Journal of Virology
基金 国家高技术研究发展计划(863计划)(2008AA02Z416)
关键词 甲型H1N1流感 流行 累计和 指数加权移动平均 Pandemic H1 N1 2009 Epidemic CUSUM EWMA
  • 相关文献

参考文献15

  • 1Perez-Padilla R, de la Rosa-Zamboni D, Ponce de Leon S, et al. Pneumonia and respiratory failure from swine-origin influenza A (H1N1) in Mexico. N Engl J Med, 2010, 361(7): 680-688.
  • 2杨鹏,张奕,石伟先,黎新宇,张海燕,张震,郭菁,王全意.医务人员配戴口罩预防呼吸道感染效果评价的整群随机临床试验研究[J].国际病毒学杂志,2011,18(3):65-70. 被引量:29
  • 3杨鹏,王全意,石伟先,吕敏,段玮,彭晓旻,吕燕宁,梁慧洁,王晓梅,庞星火.北京市2007-2008年流感监测预警分析[J].中华疾病控制杂志,2010,14(2):108-111. 被引量:43
  • 4Hunter JS. The Exponentially Weighted Moving Average. Journal of Quality Technology, 1986, 18 (4): 203-210.
  • 5Cowling ILl, Wong I0, Ho LM, et al. Methods for monitoring influenza surveillance data. Int J Epidemiol, 2006, 35 (5) : 1314-1321.
  • 6Montgomery Douglas C. Introduction to Statistical Quality Control. 3rd edition. John Wiley and Sons Inc, 1996: 314-330.
  • 7Carpenter TE. Evaluation and extension of the Cusum technique with an application to Salmonella surveillance. J Vet Diagn Invest, 2002, 14(7) : 211-218.
  • 8何桢,刘豹.累计和控制图在测量系统稳定性中的应用研究[J].系统工程学报,2002,17(6):547-550. 被引量:19
  • 9王殊轶.CUSUM控制图的一种优化设计方法研究[J].工业工程与管理,2004,2(2):44-46. 被引量:6
  • 10Michael LJ, Atar B, Ian P, et al. A simulation study comparing aberration detection algorithms for syndromic surveillance. BMC Medical Informatics and Decision making, 2007, 7 (6) : 1472-6947.

二级参考文献93

共引文献164

同被引文献102

  • 1王一任,孙振球.医用综合评价方法研究进展[J].中南大学学报(医学版),2005,30(2):228-232. 被引量:120
  • 2王海宇,徐济超,杨剑锋,常广庶.基于APL的EWMA图优化设计[J].系统工程理论方法应用,2006,15(1):65-70. 被引量:5
  • 3高婷,刘桂荣,黎新宇,贾蕾,刘园,唐耀武.北京市近14年细菌性痢疾的疫情分析[J].中华预防医学杂志,2007,41(1):54-57. 被引量:39
  • 4吉明明,孙浩.具有可变抽样区间的EWMA标准差控制图[J].数学的实践与认识,2007,37(12):90-96. 被引量:9
  • 5滕卫平,邢小平,童南伟,等.中国十城市甲状腺疾病流行病学调查[C].中华医学会第九次全国内分泌学学术会议论文汇编.北京:中华医学会,2010:11.
  • 6Hsieh YC, Huang YC. Scarlet fever outbreak in Hong Kong,2011.J Microbiol Immunol Infect,2011,44(6) :409-411.
  • 7Wong W,Moore AW. Classical time-seeries methods forbiosurveillance//Wangner MM,Moore AW,Aryel RM.Handbook of Bioserveillance. London : Elsewier AcademicPress,2006:217-234.
  • 8Benneyan JC. Statistical quality control methods in infectioncontrol and hospital epidemiology, part I : Introduction andbasic theory. Infect Control Hosp Epidemiol, 1998, 19 (3):194-214.
  • 9Carpenter TE. Evaluation and extension of the Cusum techniquewith an application to Salmonella surveillance. J Vet DiagnInvest,2002,14: 211-218.
  • 10Cowling BJ, Wong IO, Ho LM,et al. Methods for monitoringinfluenza surveillance data. Int J Epidemiol, 2006,35 (5):1314-1321.

引证文献9

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部