期刊文献+

一类求解鞍点问题的广义不精确Uzawa方法 被引量:7

A CLASS OF GENERALIZED INEXACT UZAWA METHODS FOR SADDLE POINT PROBLEMS
原文传递
导出
摘要 本文提出了一类求解大型稀疏鞍点问题的新的广义不精确Uzawa算法.该方法不仅可以包含前人的方法,而且可以拓展出很多新方法.理论分析给出该方法收敛的条件,并详细的分析了其收敛性质和参数矩阵的选取方法.通过对有限元离散的Stokes问题的数值实验表明,新方法是行之有效的,其收敛速度明显优于原来的算法. A class of general inexact Uzawa methods for the solution of large and sparse saddle point problems are presented, which can not only cover many existing approaches, but also imply many new iteration scheme. Theoretical analyses give the convergence condition for new methods, as well as the choice of the optimal parameter matrices. Numerical results from discrete stokes problems by finite element method show that the new algorithm is efficient, and much faster than existing algorithms.
出处 《计算数学》 CSCD 北大核心 2012年第1期37-48,共12页 Mathematica Numerica Sinica
基金 国家自然科学基金(10801106) 中央高校基本科研业务费专项资金
关键词 鞍点问题 Uzawa方法 预处理 收敛性 Saddle point problem Uzawa method preconditioner convergence
  • 相关文献

参考文献16

  • 1Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive defitine linear systems[J]. SIAM J. Matrix Anal. Appl., 2003, 24: 603-626.
  • 2Elman H C, Ramage A, Silvester D J. Algorithm 866:IFISS, a MTALAB toolbox for modelling incompressible flow[J]. ACM Trans. Math. Soft., 2007, 33: 1-18.
  • 3Bai Z Z. Structured preconditioners for nonsingular matrices of block two-by-two structures[J]. Math. Comput., 2006, 75: 791-815.
  • 4Young D M. Iterative Solutions of Large Linear Systems[M]. Academic Press, New York, 1971.
  • 5Bai Z Z, Pan J Y, Ng M K. New preconditioners for saddle point problems[J]. Appl. Math. Comput., 2006, 172: 762-771.
  • 6Bai Z Z, Wang Z Q. On parameterized inexact Uzawa methods for generalized saddle point problems[J]. Linear Algebra Appl., 2008, 428:2900 2932.
  • 7Cao Y, Jiang M Q, Zheng Y L. A splitting preconditioner for saddle point problems[J]. Numer. Linear Algebra & Appl., 2011, DOI: 10.1002/nla.772.
  • 8Bai Z Z, Golub G H, Li C K. Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices[J]. SIAM J. Sci. Comput., 2006, 28: 583-603.
  • 9程晓良,彭武安.鞍点问题迭代解法收敛因子估计[J].高校应用数学学报(A辑),2000,15A(3):365-368. 被引量:5
  • 10Li C J, Li B J, Evans D J. A generalized successive overrelaxation method for least square problems[J]. BIT, 1998, 38: 347-356.

二级参考文献13

  • 1Tong Z,Numer Math,1998年,79卷,643页
  • 2H Elman and G H Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems,SIAM J Numer. Anal., 31(1994) 1645-1661.
  • 3G H Golub, X Wu, and Jin-Yun Yuan, SOR-like methods for augmented systems, BIT v41(2001)71-85.
  • 4A Bjock, Numerical stability of methods for solving augmented systems, in Proceedings of Recent Developments in Optimization Theory and Nonlinear Analysis, Jerusalem, 1995, Y Censor and S Reich, eds, Contemp. Math., 204, Amer. Math. Soc., Providence, RI, 1997, 51-60.
  • 5B. Fischer, A Ramage, D J Silvester and A J Wathen, Minimum residual methods for augmented systems, BIT, 38(1998) 527-543.
  • 6S Wright, Stability of augmented system factorization in interior-point methods, SIAM J Matrix Anal. Appl., 18(1997) 191-222.
  • 7D.M. Young, Iterative solutions of large linear systems, Academic Press, NY, 1971.
  • 8A Hadjidimos, Accelerated Overrelaxation Method, Math. Comp, 32 (1978) 149-157.
  • 9Changjun Li and D J Evans, A new iterative method for large sparse saddle point problem,International Journal of Computer mathematics v74(2000) 529-536.
  • 10Changjun Li, Baoja Li and David J Evans, Optimum accelerated parameter for the GSOR method,Neural, Parallel & Scientific Computations v7(1999) 453-462.

共引文献13

同被引文献30

  • 1Zhong-zhi Bai,Jun-feng Yin,Yang-feng Su.A SHIFT-SPLITTING PRECONDITIONER FOR NON-HERMITIAN POSITIVE DEFINITE MATRICES[J].Journal of Computational Mathematics,2006,24(4):539-552. 被引量:17
  • 2Elman H C, Silvester D J, Wathen A J. Finite elements and fast iterative solvers: with applicationsin incompressible fluid dynamics[M]. New York: Oxford University Press, 2005: 342-384.
  • 3Cuvelier C, Segal A, Steenhoven A V. Finite element methods and the Navier-Stokes [M]. D. Reidel Pub- lishing Co, 1986: 231-258.
  • 4Saad Y. Iterative methods for sparse linear systems, seconded edition [M]. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003:427-489.
  • 5Ke C. Matrix preconditioning techniques and applica- tions [M]. Cambridge: Cambridge University Press, 2005 : 123-204.
  • 6Bai Z Z, Golub G H, Li C K. Optimal Parameter in hermitian and skew-Hermitian splitting method for certain two-by-two block matrices [J]. SIAM Journal on Scientific Computing, 2006, 28(2): 583-603.
  • 7Bai Z Z, Golub G H, Ng M K. On Successive-overrelax- ation acceleration of the hermitian and skew-Hermitian splitting iterations[J]. Numerical Linear Algebra With Applications, 2007, 14(4): 319-335.
  • 8Krzyzanowski P. On block preconditioners for saddle point problems with singular or indefinite (1, 1) block [J]. Numerical Linear Algebra With Applications, 2011, 18 (1) : 123-140.
  • 9Elman H C, Ramage A, Silvester D J. IFISS: a Matlab toolbox for modelling incompressible flow [J]. ACM Transactions Mathematical Software, 2007,33 (2) : 1-18.
  • 10Lung Chak Chan,Michael K. Ng,Nam Kiu Tsing.Spectral Analysis for HSS Preconditioners[J].Numerical Mathematics(Theory,Methods and Applications),2008,1(1):57-77. 被引量:3

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部