期刊文献+

一类凸优化的混合下降算法 被引量:2

A HYBRID DESCENT ALGORITHM FOR CONVEX MINIMIZATION
原文传递
导出
摘要 邻近点算法(PPA)是一类求解凸优化问题的经典算法,但往往需要精确求解隐式子问题,于是近似邻近点算法(APPA)在满足一定的近似规则下非精确求解PPA的子问题,降低了求解难度.本文利用近似规则的历史信息和随机数扩张预测校正步产牛了两个方向,通过随机数组合两个方向获得了一类凸优化的混合下降算法.在近似规则满足的情况下,给出了混合下降算法的收敛性证明.一系列的数值试验表明了混合下降算法的有效性和效率性. The proximal point algorithm (PPA) is a classical method for solving convex minimization, which frequently finds an exact solution of implicit subproblems. To reduce the difficulty and complexity in computing implicit subproblems, the approximate proximal point method(APPA) establishes an approximate solution of implicit subproblems under some approximate rules. In this paper, two directions were designed by making greater use of historical information of approximate rules and the prediction-correction step length exten- sion with the random number series, and a hybrid descent method(HD Method) for convex minimization was developed through convex combinations of the two directions with the random number series. Subsequently we established the strong convergence of HD method for convex minimization under some approximate rules. Moreover, it is also worth noting that the efficiency of HD method is confirmed through a series of numerical experiments.
作者 徐海文
出处 《计算数学》 CSCD 北大核心 2012年第1期93-102,共10页 Mathematica Numerica Sinica
基金 国家科技支撑项目(2011BAH24B06) 中国民航飞行学院科研基金(J2010-45)
关键词 凸优化问题 混合下降算法 邻近点算法 近似邻近点算法 Convex minimization hybrid descent method proximal point method approximate proximal point method
  • 相关文献

参考文献1

二级参考文献12

  • 1Han D R;He B S.A new accuracy criterion for approximate proximal point algorithms[J],2001(2).
  • 2Chen G;Teboulle M.A proximal-based decomposition method for convex minimization problems,1994.
  • 3Brézis H.Opérateurs Maximaux Monotone et Semi-Groups de Contractions dans les Espaces de Hilbert,1973.
  • 4Burachik R S;Iusem A N;Svaiter B F.Enlargement of monotone operators with applications to variational inequalities[J],1997.
  • 5Rockafellar R T.Monotone operators and the proximal point algorithm[J],1976.
  • 6Teboulle M.Convergence of proximal-like algorithms[J],1997.
  • 7Eckstein J.Approximate iterations in Bregman-function-based proximal algorithms[J],1998.
  • 8HeBS.Inexact implicit methods for monotone general variational inequalities[J],1999.
  • 9Eckstein J;Bertsekas D P.On the Douglas-Rachford splitting method and the proximal points algorithm for maximal monotone operators[J],1992.
  • 10Bertsekas D P;Tsitsiklis J N.Parallel and distributed computation in Numerical Methods,1989.

共引文献8

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部