期刊文献+

航天器姿轨耦合自适应同步控制 被引量:4

Improving Adaptive Synchronization Control of Coupled Spacecraft Attitude and Orbit
下载PDF
导出
摘要 航天器动力学模型的精确建立,对于成功完成空间任务来说必不可少,而单独考虑轨道或姿态的模型无法满足任务高精度要求,因此从相对轨道动力学方程和修正罗德里格斯参数(MRP)表示的姿态运动学方程出发,建立了航天器六自由度的相对耦合动力学方程。为了给出姿轨运动的基准,分别设计了航天器理想姿态和椭圆加指数接近轨道。针对航天器参数不确定问题设计了自适应同步控制律,并通过Lyapunov直接法证明闭环系统的全局渐近稳定性。从仿真结果可以看出,自适应同步控制算法能使轨道和姿态误差逐步趋于零。 Sections 1,2 and 3 explain is an improvement over previous ones. the adaptive synchronization control mentioned in the title, which we believe Their core consists of: "Precise dynamic model of spacecraft is essential for space missions to be completed successfully. Nevertheless, the independent orbit or attitude dynamic models can not meet the requirements of high precision tasks. We developed a 6-DOF relative coupling dynamic model based upon the relative motion dynamics equations and attitude kinematics equations described by MRP (Modified Rodrigues Parameters). In order to give the benchmarks of attitude and orbit motion respectively, the ideal spacecraft attitude and the elliptical plus exponent track orbit were given. Nonlinear synchronization control law was designed for the uncertainties of spacecraft parameters, whose close-loop system was proved to be globally asymptotically stable by Lyapunov direct method. " Finally, the simulation results, presented in Figs. 3 through 5, and their analysis illustrate preliminarily that the nonlinear synchronization control algorithm can robustly drive the orbit errors and attitude ones to converge to zero.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2012年第1期32-37,共6页 Journal of Northwestern Polytechnical University
关键词 姿轨耦合模型 自适应同步控制 类拉格朗日方程 修正罗德里格斯参数 algorithms, analysis, control, design , dynamics, methods, models, orbits, Runge-Kutta methods flight, spacecraft, stability, synchronization, equations of motion, errors, kinematics, Lyapunov , robustness (control systems), simulation, space tracking ( position), uncertain systems, velocity attitude and orbital coupling model, Modified Rodrigues Parameters(MRP), quasi-Lagrange equation
  • 相关文献

参考文献9

  • 1Partch Russell E, Baker Vern, Keith Clark. Autonomous Proximity Microsatellites. ADRL Technology Horizons, 2003,4 (4) : 16 -18.
  • 2Inalhan G. Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits. Journal of Guidance, Control, and Dy-namics, 2002, 25 : 48 - 60.
  • 3Shay Segal. Effect of Kinematic Rotation-Translation Coupling on Relative Spacecraft Translational Dynamics. Journal of Guid- ance, Control and Dynamics, 2009, 32(3) : 1045- 1050.
  • 4Pan H, Kapila V. Adaptive Nonlinear Control for Spacecraft Formation Flying with Coulped Translational and Attitude Dynam- ics. Proceedings of the 40th IEEE Conference on Decision and Control, New York, 2001,2057 -2062.
  • 5Xu Yunjun. Chattering Free Sliding Mode Control for a 6 DOF Formation Flying Mission, AIAA-2005-6464.
  • 6Koji Yamanaka. Simulataneous Translation and Rotation Control Law for Formation Flying Satellites. AIAA-2000 -444.
  • 7Liu Hongtao. Adaptive Synchronization Control of Multiple Spacecraft Formation Flying. Journal of Dynamic Systems Measure- ment and Control, 2007,129:337 - 342.
  • 8Jia Q L, Li G W. Formation Control and Attitude Cooperative Control of Multiple Rigid Body Systems. Proceedings of the 6th International Conference on Intelligent Systems Design and Application, 2006.
  • 9Hyungjoo Yoon. Novel Expressions of Equations of Relative Motion and Control in Keplerian Orbits. An Engineering Note of Journal of Guidance, Control and Dynamics, 2009, 32 (2) : 664- 669.

同被引文献20

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部