期刊文献+

一种基于波束域最大非冗余矩阵的四阶高分辨DOA估计算法 被引量:1

A Better High Resolution Fourth-Order DOA Algorithm Based on Beamspace Maximal Set of Nonredundant Cumulant
下载PDF
导出
摘要 在非白噪声背景下,基于二阶统计量的高分辨方法性能较差。基于四阶累积量的高分辨方法能较好地抑制空间高斯噪声,但其运算量较大。文献[9]提出了一种基于四阶累积量的波束域MUSIC方法,降低了运算量,但其四阶累积量矩阵仍存在较多的冗余元素。为了进一步降低运算量,提出了一种波束域最大非冗余四阶累积量矩阵。仿真分析和实验结果表明,与波束域四阶累积量MUSIC方法相比,论文所提方法在保证估计性能的同时减小了运算量。 Aim. Refs. 4 through 7 are, in our opinion, somewhat deficient in either direction-of-arrival(DOA) estimation performance or computation load in the spatially correlated Gaussian noise environment. Ref. 9 solves the above problem to a certain extent, but the computation load is still not satisfactory. We propose a method that, we believe, is better. Section 2 of the full paper briefs the beamspace fourth-order cumulant (BFOC) method in Ref. 9 that uses beamspace data to build a full set of cumulant matrix. Section 3 cumulant method using beamspace maximal set of nonredundant cumulant ( explains in some detail our fourth-order BMSNC). The core our better method deals with the BMSNC matrix of the beams' output signals and therefore leads of section 4 is that to less computation cost. Section 5 presents the simulation results, which are given in Figs. 1 through 4, and compares'the resolution and estimation precision of our method with those of the BFOC method in Ref. 9. The comparison shows preliminarily that our method has just as good DOA estimation performance as the BFOC method but quite importantly at less computation cost.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2012年第1期108-111,共4页 Journal of Northwestern Polytechnical University
关键词 四阶累积量 波束域 最大非冗余 MUSIC方法 方位估计 algorithms, analysis, approximation theory, arrays, beamforming, calculations, direction of arrival, efficiency, errors, estimation, Gaussian noise, models, parameter estimation, probability, redundancy, signal processing, signal to noise ratio, simulation, spectrum analysis, stability, statistics fourth-order cumulant, MUSIC algorithm
  • 相关文献

参考文献9

  • 1Schmidt R O. Multiple Emitter Location and Signal Parameter Estimation. IEEE Trans on Antennas and Propagation, 1986, 34 (3) : 276 - 280.
  • 2Roy R, Kailath T. ESPRIT-Estimation of Signal Parameters via Rotational Invariance Techniques. IEEE Trans on ASSP, 1989, 37(7) :984 -995.
  • 3Kumaresan R, Tufts D W. Estimating the Angles of Arrival of Multiple Plane Waves. IEEE Trans on Aerospace and Electronic Systems, 1983,19( 1 ) :134 - 139.
  • 4Chiang H H, Nikias C L. The ESPRIT Algorithm with Higher-Order Statistics. Proc of Workshop on Higher-Order Spectral A- nalysis, 1989,163 - 168.
  • 5Porat B, Friedlander B. Direction Finding Algorithms Based on High-Order Statistics. IEEE Trans on SP, 1991, 39(9) :2016 - 2024.
  • 6丁齐,肖先赐.基于四阶累积量的子空间测向方法研究[J].电子科技大学学报,1998,27(1):33-38. 被引量:9
  • 7冯西安,黄建国.基于四阶累积量切片的高分辨方位估计方法研究[J].系统工程与电子技术,2001,23(8):1-3. 被引量:7
  • 8Suwandi Lie, Leyman A R, Chew Y H. Fourth-Order and Weighted Mixed Order Direction-of-Arrival Estimators. IEEE Signal Processing Letters, 2006,13 ( 11 ) :691 - 694.
  • 9杜金香,冯西安.基于四阶累积量的波束域MUSIC方法[J].西北工业大学学报,2009,27(5):684-687. 被引量:3

二级参考文献6

共引文献15

同被引文献18

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部