期刊文献+

一类具有梯度项的超定边值问题中解的对称性

The Symmetry of Solution for a Class of Overdetermined Boundary Value Problem Containing Gradient
下载PDF
导出
摘要 利用经典的平行平面移动法研究一类具有梯度项的拉普拉斯方程超定问题中解的对称性,得到此类超定边值问题解和区域对称的充分条件。结果发现,解和区域的对称性依赖于非齐次项关于空间变量的连续性、对称性及关于梯度变量偏导数的连续性。 The classical moving plane method is med to investigate the symmetry of solutions for a class of Laplacian overdetermined equation which contains the gradient.The sufficient condition for the symmetry of solutions and domain is obtained and it’s found out that the symmetry of the solution and domain depends on the continuity symmetry of the non-homogeneous term on the spatial variable and the continuity on the partial derivative to the gradient.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第1期169-172,共4页 Periodical of Ocean University of China
基金 国家留学回国人员科研启动基金项目(910937020) 中央高校基本科研业务费专项基金项目(201013043)资助
关键词 拉普拉斯方程 超定问题 对称性 Laplace equation overdetermined symmetry
  • 相关文献

参考文献8

  • 1Serrin J. A symmetry problem in potential theory [J]. Arch Ra tion Meeh Anal, 1971, 43(4): 304-318.
  • 2Colesanti A. A symmetry result for the p-Laplacian equation via the moving planes method [J]. App1 Anal, 1994, 55 (3-4) : 207- 213.
  • 3Gidas B, Ni W M, Nirenberg L Symmetry and related properties via the maximum principle [J]. Comm Math Phys, 1979, 68(3) 209-243.
  • 4Brock F, Henrot A. A symmetry result for an overdetermined el- liptic problem using continuous rearrangement and domain deriva- tive [J]. Rend Circ Mat Palermo, 2002, 51(3): 375-390.
  • 5Choulli M, Henrot A. Use of the domain derivative to prove sym- metry results in partial differential equations [J]. Math Naehr, 1998, 192: 91-105.
  • 6Fragala I, Gazzaola I F, Kawohl B. Overdetemined boundary val- ue problems with possibly degenerate elliptieity: a geometry ap- proach ]-J]. Math Zeitsehr, 2006, 254(1) : 117-132.
  • 7Garofalo N, Lewis J. A symmetry result related to some Overde- ternined boundary value .problems [J]. Am J Math, 1989, 111 (1): 9-33.
  • 8Ragous L. Symmetry theorems via the continuous steiner symme- trizati0n [J]. Electron J Differ Equations, 2000, 44: 1-11.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部