期刊文献+

复杂网络中尺度研究揭开网络同步化过程 被引量:5

Mesoscales Reveal Synchronization Processes in Complex Networks
下载PDF
导出
摘要 复杂网络的中尺度研究是目前复杂网络研究中的一个前沿方向。本文主要介绍复杂网络的Laplacian矩阵的特征值谱的性质,指出特征值谱与度序列的强相关性。并且,在中尺度意义下,研究了不同拓扑结构的复杂网络的同步以及广义同步过程,发现同步是从度大的区域开始。进一步揭示了社团结构和同步时间尺度都与网络的特征值谱有关,社团网络的同步过程表现为部分同步—聚类同步—全局完全同步,该过程有助于网络社团结构的识别。最后介绍了与网络中尺度研究相关的一些前沿工作。 Nowadays,mesoscales in complex networks has been an important topic of research in the field of complex networks.The paper presents the Laplacian spectral features of complex networks and reports the finding of a strong correlation between the laplacian spectrum and the node-degree sequence of a network.Furthermore,the synchronization and generalized synchronization of complex networks under different topological structures at the mesoscale level of description are studied.It is found that synchronization first starts from the nodes with largest degrees.It is also explored that the Laplacian spectrum shows a close relation with community structure and time scales regarding the network synchronization process.For community networks,there exists a general path towards synchronization: partial synchronization-cluster synchronization-global complete synchronization.This dynamical process helps to find the community structure of a network.Finally,some advanced researches of mesoscales in complex networks is introduced.
作者 陈娟 陆君安
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第1期8-16,共9页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(11172215 60974081 61004096)
关键词 复杂网络 LAPLACIAN谱 中尺度 同步过程 complex networks Laplacian spectra mesoscale synchronization processes
  • 相关文献

参考文献36

  • 1WATTS D J, STROGATZ S H. Collective dynamics of 'small world' networks[J]. Nature, 1998, 393: 440-442.
  • 2BARABASI A-L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286: 509-512.
  • 3BARABASI A-L. Linked: the new science of networks[M]. Massachusetts: Perus Publishing, 2002.
  • 4WATTS D J. The 'new' science of networks[J]. Annual Review of Sociology, 2004, 30: 243-270.
  • 5ALBERT R, BARABASI A-L. Statistical mechanics of complex networks[J]. Review of Modem Physics, 2002, 74 (1): 47-97.
  • 6STROGATZ S H. Exploring complex networks[J]. Nature, 2001,410: 268-276.
  • 7WANG X, CHEN G. Complex networks: Small-world, scale-free and beyond[J]. IEEE Circuits and Systems Magazine, 2003, 3 (1): 6-20.
  • 8PECORA L M, CARROLL T L. Master stability functions for synchronized coupled systems[J]. Phys Rev Lett, 1998, 80: 2109.
  • 9BLEKHMAN I I. Synchronization in science and technology[M]. ASME Press, 1988.
  • 10WU C W, CHUA L O. Application of graph theory to the synchronization in an army of coupled nonlinear oscillators[J]. IEEE Trans. Circuits & Systems-I, 1995, 42: 494-497.

同被引文献116

  • 1周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(1):31-36. 被引量:239
  • 2赵明,汪秉宏,蒋品群,周涛.复杂网络上动力系统同步的研究进展[J].物理学进展,2005,25(3):273-295. 被引量:44
  • 3胡晓峰,等.作战模拟术语导读[M].北京:国防大学出版社,2004.
  • 4汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012.
  • 5Zachary W W. An information flow model for conflict and fission in small groups [J]. J Anthropol Res, 1977,33 (4) : 452 - 473.
  • 6Watts D J, Dodds P S, Newman M E J. Identity and search in social networks[J]. Science,2002,296:1302 - 1304.
  • 7Girvan M, Newman M E J. Physical sciences-applied mathematics[J]. Proc Natl Acad Sci U S A,2002,99(12):7821 - 7826.
  • 8Motter A E, Nishikawa T, Lai Y-C. Large-scale structural organization of social networks[J]. Phys Rev E, 2003,68 (3) : 036105.
  • 9Ravasz E,Somera A L, Mongru D A , et al. Hierarchical organization of modularity in metabolic networks[J]. Science, 2002,297:1551 - 1554.
  • 10Spirin V,Mirny L A, Protein complexes and functional modules inmolecular networks[J]. Proc Natl Acad Sci USA , 2003,100(21) :12123 - 12128.

引证文献5

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部