期刊文献+

基于演化非对称核函数的均值漂移跟踪算法 被引量:2

Enhanced Mean Shift Tracking Algorithm Based on Evolutive Asymmetric Kernel Function
下载PDF
导出
摘要 针对传统均值漂移跟踪算法中采用的对称核函数模板中包含了较多背景像素点,影响跟踪精确度和稳定性的缺点,在固定非对称核函数的基础上对均值漂移跟踪算法进行了改进,提出了一种基于演化非对称核函数的均值漂移目标跟踪算法。本文算法首先介绍了将非对称核函数模板引用到均值漂移算法框架的关键问题——模板中心——的计算方法;其次将非对称核函数模板的表述和演化有机结合,提出了利用区域相似度的目标轮廓水平集演化算法并阐述了非对称核函数模板的更新策略。实验结果表明,相比现有的方法,本文提出的基于演化非对称核函数模板均值漂移跟踪算法具有更高的准确性和可靠性,同时也能满足一般目标跟踪任务的实时性要求。 Aimed at the defect of the traditional mean shift tracking algorithm by using symmetric kernel function,which contains amounts of background pixels,an enhanced mean shift tracking algorithm is presented based on active asymmetric kernel to improve the tracking accuracy and stability.The paper firstly described the calculation method of template center which is the key issue in introducing asymmetric kernel function into mean shift algorithm framework.Then,to combine the expression and evolution of asymmetric kernel function,level set contour evolution algorithm using regional similarity is presented.Finally,the asymmetric kernel function update strategy is introduced.The above three points constitute the mean shift tracking algorithm based on evolutive asymmetric kernel function overall context.Experimental results show that compared to existing methods,the mean shift tracking algorithm based on evolutive asymmetric kernel presented has higher accuracy and reliability,as well as meets the real-time requirements of general tracking tasks.
出处 《光电工程》 CAS CSCD 北大核心 2012年第1期74-79,共6页 Opto-Electronic Engineering
基金 国家863项目资助(2008AA042602) 国家自然科学基金(60704030) 中央高校基本科研业务费专项资金资助
关键词 目标跟踪 均值漂移 非对称核函数 水平集 object tracking mean shift asymmetric kernel function level set
  • 相关文献

参考文献11

  • 1DRUMMOND T, CIPOLLA R. Real-time Visual Tracking of Complex Structures [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 2002, 4(7): 932-946.
  • 2COMANICIU D, RAMESH V, MEER P. Kernel-Based Object Tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2003, 25(5): 564-577.
  • 3COLLINS R T. Mean-shift Blob Tracking through Scale Space [C]//Computer Vision and Pattern Recognition, Monona Terrace ConventionCenter, Madison, Wisconsin, June 18-20, 2003. LosAlamitos: IEEECS, 2003, 2: 234-240.
  • 4LIU T L, CHEN H T. Real-time tracking using trust-region methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2004, 26(3): 397-402.
  • 5ZIVKOVIC Z, KROSE B. An EM-like algorithm for color-histogram-based object tracking [C]//Computer Vision and Pattern Recognition, Washington D C, June 27 - July 2, 2004. Los Alamitos: IEEE CS, 2004: 798-803.
  • 6WANG Jue, THIESSON B, XU Ying-qing, et al. Image and video segmentation by anisotropic mean shift [C]//European Conference on Computer Vision, Prague, Czech Republic, May 2004. Berlin: Springer, 2004: 238-249.
  • 7YILMAZ A. Object Tracking by Asymmetric Kernel Mean Shift with Automatic Scale and Orientation Selection [C]//Computer Vision and Pattern Recognition, Minneapolis, June 17-22, 2007. Los Alamitos: IEEE CS, 2007: 1-6.
  • 8LEE S H, KANG M G. Motion tracking based on area and level set weighted centroid shifting [J]. IEEE Transactions on Computer Vision(S0920-5691), 2010, 4: 73-84.
  • 9CHEN Q, SUN Q S, HENG P A, et al. Two-Stage Object Tracking Method Based on Kernel and Active Contour [J]. IEEE Transactions on Circuits and Systems for Video Technology (S1051-8215), 2010, 20(4): 605-609.
  • 10Caselles V, Catte F, Coil T, et al. A geometric model for active contours in image processing [J]. Numerische Mathematik, 1993, 66: 1-31.

同被引文献35

  • 1李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 2葛元,郭兴伟,王林泉.傅立叶描述子在手势识别中的应用[J].计算机应用与软件,2005,22(6):12-13. 被引量:16
  • 3王康泰,戴文战.一种基于Sobel算子和灰色关联度的图像边缘检测方法[J].计算机应用,2006,26(5):1035-1036. 被引量:42
  • 4周芳芳,樊晓平,叶榛.均值漂移算法的研究与应用[J].控制与决策,2007,22(8):841-847. 被引量:59
  • 5Girisha R, Murali S. Tracking Humans using Novel Optical Flow Algorithm for Surveillance Videos [C]// Compute '11 Proceedings of the Fourth AnnualACM Bangalore Conference, New York, NY, USA, Mar 25-26, 2011.
  • 6Shen Shuhan, Tong Minglei, Deng Haolong, et al. Model based human motion tracking using probability evolutionary algorithm [J]. Pattern Recognition Letters(S0167-8655), 2008, 29(13): 1877-1886.
  • 7Daniel Olmeda, Arturo de la Escalera, Jos6 Maria Armingol. Far infrared pedestrian detection and tracking for night driving [J]. Robotica(S0263-5747), 2011, 29(4): 495-505.
  • 8Lin Ma, Kuanquan Wang, David Zhang. A universal texture segmentation and representation scheme based on ant colony optimization for iris image processing [J]. Computers and Mathematics with Applications(S0898-1221), 2009, 57(11/12): 1862-1868.
  • 9Etemad S Ali, Tony White. An ant-inspired algorithm for detection of image edge features [J]. Applied Soft Computing(S1568-4946), 2011, 11(8): 4883-4893.
  • 10Lu Desian, Chien-Chang Chen. Edge detection improvement by ant colony optimization [J]. Pattern Recognition Letters(S0167-8655), 2008, 29(4): 416-425.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部