摘要
We study the well-posedness of the equations with fractional derivative D^αu(t)= Au(t) + f(t) (0 ≤ t ≤ 2π), where A is a closed operator in a Banach space X, 0 〈 α 〈 1 and D^αis the fractional derivative in the sense of Weyl. Although this problem is not always well-posed in L^P(0, 2π; X) or periodic continuous function spaces Cper([0, 2π]; X), we show by using the method of sum that it is well-posed in some subspaces of L^P(0, 2π; X) or Cper ([0, 2π]; X).
We study the well-posedness of the equations with fractional derivative D^αu(t)= Au(t) + f(t) (0 ≤ t ≤ 2π), where A is a closed operator in a Banach space X, 0 〈 α 〈 1 and D^αis the fractional derivative in the sense of Weyl. Although this problem is not always well-posed in L^P(0, 2π; X) or periodic continuous function spaces Cper([0, 2π]; X), we show by using the method of sum that it is well-posed in some subspaces of L^P(0, 2π; X) or Cper ([0, 2π]; X).
基金
Supported by National Natural Science Foundation of China (Grant No.10731020)
the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.200800030059)