期刊文献+

The Asymptotic Behavior of Chern-Simons Higgs Model on a Compact Riemann Surface with Boundary

The Asymptotic Behavior of Chern-Simons Higgs Model on a Compact Riemann Surface with Boundary
原文传递
导出
摘要 We study the self-dual Chern-Simons Higgs equation on a compact Riemann surface with the Neumann boundary condition. In the previous paper, we show that the Chern-Simons Higgs equation with parameter A 〉 0 has at least two solutions (uλ^-, uλ^2) for A sufficiently large, which satisfy that uλ^1 - -u0 almost everywhere as λ →∞, and that uλ^2 →-∞ almost everywhere as λ→∞, where u0 is a (negative) Green function on M. In this paper, we study the asymptotic behavior of the solutions as λ →∞, and prove that uλ^2 - uλ^2- converges to a solution of the Kazdan-Warner equation if the geodesic curvature of the boundary OM is negative, or the geodesic curvature is nonpositive and the Gauss curvature is negative where the geodesic curvature is zero. We study the self-dual Chern-Simons Higgs equation on a compact Riemann surface with the Neumann boundary condition. In the previous paper, we show that the Chern-Simons Higgs equation with parameter A 〉 0 has at least two solutions (uλ^-, uλ^2) for A sufficiently large, which satisfy that uλ^1 - -u0 almost everywhere as λ →∞, and that uλ^2 →-∞ almost everywhere as λ→∞, where u0 is a (negative) Green function on M. In this paper, we study the asymptotic behavior of the solutions as λ →∞, and prove that uλ^2 - uλ^2- converges to a solution of the Kazdan-Warner equation if the geodesic curvature of the boundary OM is negative, or the geodesic curvature is nonpositive and the Gauss curvature is negative where the geodesic curvature is zero.
作者 Meng WANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第1期145-170,共26页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant Nos.10701064,10931001) XINXING Project of Zhejiang University
关键词 Riemann surface . Neumann condition Chern-Simons Higgs model Green function Kazdan-Warner equation Riemann surface,. Neumann condition, Chern-Simons Higgs model, Green function Kazdan-Warner equation
  • 相关文献

参考文献23

  • 1Hong, J., Kim, Y., Pac, P.: Multivortex solutions of the abelian Chern-Simons-Higgs theory. Phys. Rev. Left., 64(19), 2230-2233 (1990).
  • 2Jackiw, R., Weinberg, E. J.: Self-dual Chern-Simons vortices. Phys. Rev. Lett., 64(19), 2234-2237 (1990).
  • 3Caffaxelli, L., Yang, Y.: Vortex condensation in the Chern-Simons Higgs model: an existence theorem. Comm. Math. Phys., 168(2), 321-336 (1995).
  • 4Chae, D., Imanuvilov, O. Y.: The existence of non-topological multivotex solutions in the relativistic self-dual Chern-Siomins theory. Comm. Math. Phys., 215, 119-142 (2000).
  • 5Ding, W., Jost, J., Li, J., et al.: An analysis of the two-vortex case in the Chern-Simons Higgs model. Calc. Vat. Partial Di~erential Equation, 7(1), 87-97 (1998).
  • 6Ding, W., Jost, J., Li, J., et al.: Self duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with 6th order potentials. Comm. Math. Phys., 217(2), 383-407 (2001).
  • 7Nolasco, M., Tarantello, G.: On a sharp type inequality on two dimensional compact manifolds. Arch. Rational Mech. Anal., 145, 161-195 (1998).
  • 8Nolasco, M., Taxantello, G.: Double vortex condensates in the Chern-Simons-Higgs theory. Calc. Var. Partial Differential Equations, 9, 31-94 (1999).
  • 9Taxantello, G.: Multiple condensate solutions for the Chern-Simons-Higgs theory. J. Math. Phys., 378, 3769-3796 (1996).
  • 10Wang, R.: The existence of Chern-Simons vortices. Comm. Math. Phys., 137(3), 587-597 (1991).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部