期刊文献+

Some Results on the Majorization Theorem of Connected Graphs 被引量:1

原文传递
导出
摘要 Let π = (d1, d2,..., dn) and π' = (d'1, d'2,..., d'n) be two non-increasing degree sequences. Let π = (d1, d2,..., dn) and π' = (d'1, d'2,..., d'n) be two non-increasing degree sequences.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第2期371-378,共8页 数学学报(英文版)
基金 supported by the fund of South China Agricultural University(Grant No.4900-k08225) supported by National Natural Science Foundation of China(Grant No.11071088)
关键词 Spectral radius Perron vector majorization Spectral radius, Perron vector, majorization
  • 相关文献

参考文献9

  • 1Horn, R. A., Johnson, C. R.: Matrix Analysis, Cambridge University Press, Cambridge, 1990.
  • 2Blylkoglu, T., Leydold, J.: Graphs with given degree sequence and maximal spectral radius. Electron. J. Cornbin., 15(1), Rl19 (2008).
  • 3Liu, M. H., Liu, B. L., You, Z. F.: The majorization theorem of connected graphs. Linear Algebra Appl., 431(1), 553-557 (2009).
  • 4Wu, B. F., Xiao, E. L., Hong, Y.: The spectral radius of trees on k pendant vertices. Linear Algebra Appl., 395, 343 349 (2005).
  • 5Guo, S. G.: The spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices. Linear Algebra Appl., 408, 78-85 (2005).
  • 6Zhang, X. D.: The Laplacian spectral radii of trees with degree sequences. Discrete Math., 308, 3143-3150 (2008).
  • 7Marshall, A. W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979.
  • 8Hoffman, A. J., Smith, J. H.: On the spectral radii of topological equivalent graphs. In: Recent Adances in Graph Theory (Fiedler Ed.), Academia Praha, New York, 1975, 273-291.
  • 9ErdSs, P., Gallai, T.: Graphs with prescribed degrees of vertices (Hungarian). Mat. Lapok, 11, 264-274 (1960).

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部