期刊文献+

基于相关向量机的中长期径流预报模型研究 被引量:8

Research on mid-and long-term runoff forecast model with relevance vector machine
下载PDF
导出
摘要 鉴于其优越的预报性能,将相关向量机(RVM)应用到中长期径流预报中,并在相空间重构的基础上,建立了基于相关向量机的径流预报模型.该模型首先对径流时间序列进行相空间重构,并以重构后的径流序列作为模型输入;其次,采用粒子群优化(PSO)算法识别模型参数,利用优化所得重构参数验证时间序列具有混沌特性,在模型内循环过程中采用EM算法迭代估计超参数,并将RVM与应用较为广泛的最小二乘支持向量机(LSSVM)和自动回归滑动平均模型(ARMA)进行了比较分析,结果表明该模型具有较好的泛化能力;最后,基于水文过程变化的不确定性、RVM描述输出值的不确定度以及相应概率下的预报区间,使得调度人员在决策中能考虑预报的不确定性,定量估计各种决策的风险和效益. Due to the superior forecasting performance,relevance vector machine(RVM) was applied to mid-and long-term runoff forecasting,and based on the phase space reconstruction,the runoff relevance vector machine forecasting model was established.Firstly,the runoff time series was reconstructed in the phase space,and the reconstructed series was as the proposed model input;Secondly,the particles swarm optimization(PSO) algorithm was applied to identifying the model parameters and chaotic properties of time series.The EM algorithm was used to estimate hyper-parameters in the inherent cycle,RVM was compared with widely used least squares support vector machine(LSSVM) and auto-regressive moving average model(ARMA).The test results show that the model has good generalization ability;Finally,in terms of the uncertainty of hydrological processes,the scheduling staffs consider the uncertainties in forecasting,and quantitatively estimate the risks and benefits in decision-making based on the uncertainty of RVM output values and the probability forecast interval.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2012年第1期79-84,共6页 Journal of Dalian University of Technology
基金 水利部公益性行业专项资助项目(201001024) 国家自然科学基金资助项目(51109025)
关键词 相空间重构 相关向量机 长期径流预报 PSO算法 phase-space reconstruction relevance vector machine long-term runoff forecast PSO algorithm
  • 相关文献

参考文献13

  • 1SIVAKUMAR B. Chaos theory in hydrology important issues and interpretations [J]. Journal of Hydrology, 2000, 227 .. 1-20.
  • 2SIVAKUMAR B, JAYAWARDENA A W, FERNANDO T M K G. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches [J]. Journal of Hydrology, 2002, 265:225-245.
  • 3王文,许武成.对水文时间序列混沌特征参数估计问题的讨论[J].水科学进展,2005,16(4):609-616. 被引量:21
  • 4YU X Y, LIONG S Y, BABOVIC V. EC-SVM approach for real time hydrologic forecasting [J]. Journal of Hydroinformatics, 2004, 6(3):209-223.
  • 5SIVAKUMAR B. Nonlinear determinism in river flow prediction as a possible indicator [J]. Earth Surface Processes and Landforms, 2007, 32 .. 969-979.
  • 6LIONG S Y, SIVAPRAGASAM C. Flood stage forecasting with SVM [J]. Journal of the AmericanWater Resources Association, 2002, 38(1) .. 173-186.
  • 7林剑艺,程春田.支持向量机在中长期径流预报中的应用[J].水利学报,2006,37(6):681-686. 被引量:115
  • 8TIPPING M E. The relevance vector machine [J]. Advances in Neural Information Processing System, 2000, 12:652-658.
  • 9AGARWAL A, TRIGGS B. 3D human pose from Silhouettes by relevance vector regression [J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, 2:882-888.
  • 10BOWD C, MEDEIROS F A, ZHANG Zuo-hua, et al. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements [J]. Investigative Ophthalmology & Visual Science, 2005, 46:1322-1329.

二级参考文献67

  • 1王文均,叶敏,陈显维.长江径流时间序列混沌特性的定量分析[J].水科学进展,1994,5(2):87-94. 被引量:44
  • 2刘隽,周涛,周佩玲.GA优化支持向量机用于混沌时间序列预测[J].中国科学技术大学学报,2005,35(2):258-263. 被引量:21
  • 3严中伟.华北旱涝变化的混沌性质分析[J].气象学报,1995,53(2):232-237. 被引量:17
  • 4傅军,丁晶,邓育仁.洪水混沌特性初步研究[J].水科学进展,1996,7(3):226-230. 被引量:39
  • 5Kennel M B, Brown R, Abarbanel H D. Determining embedding dimension for phase-space reconstruction using geometrical construction[J].Phy Rev A, 1992, 45:3403 - 3411.
  • 6Liu Q, Islam S, Rodriguez-Iturbe I, et al. Phase-space analysis of daily streamflow: Characterization and prediction[J]. Adv Water Resour,1998, 21:463 - 475.
  • 7Procaccia I. Complex or just complicated? [J]. Nature, 1988, 333:498- 499.
  • 8Nerenberg, M.A.H., Essex, C. Correlation dimension and systematic geometric effects[J]. Phys Rev A, 1990, 42 (12):7065- 7074.
  • 9Tsonis A A, Elsner J B, Georgakakos K P. Estimating the dimension of weather and climate attractors: Important issues about the procedure and interpretation[J]. J Atmos Sci, 1993, 50(15) :2549 - 2555.
  • 10Wilcox B P, Seyfried M S, Matison T H. Searching for chaotic dynamics in snowmelt runoff[ J]. Water Resour Res, 1991, 27 (6):1 005 -1 010.

共引文献134

同被引文献73

  • 1王文,马骏.若干水文预报方法综述[J].水利水电科技进展,2005,25(1):56-60. 被引量:80
  • 2林剑艺,程春田.支持向量机在中长期径流预报中的应用[J].水利学报,2006,37(6):681-686. 被引量:115
  • 3俞洋,殷志锋,田亚菲.基于自适应人工鱼群算法的多用户检测器[J].电子与信息学报,2007,29(1):121-124. 被引量:37
  • 4马超群,兰秋军,陈为民.金融数据挖掘[M].北京:科学出版社,2006,202-203.
  • 5许丽佳.电子系统的故障预测与健康管理技术研究[D].成都:电子科技大学,2005.
  • 6盛骤 谢式千 潘承毅.概率论与数理统计[M].北京:高等教育出版社,1989..
  • 7Tipping M E. The relevance vector machine [ C ]//Advances in Neural Information Processing Systems 12. Cambridge: MIT Press,2000:652-658.
  • 8Tipping M E. Sparse Bayesian learning and the relevance vector machine [ J ]. Journal of Machine Learning Research, 2001, 1(3) :211-244.
  • 9Tipping M E, Faul A C. Fast marginal likelihood maximisation for sparse Bayesian models [ C]//Proc of the Ninth International Workshop on Artificial Intelligence and Statistics. Key West, Florida,USA: [ s. n. ] ,2003:1-13.
  • 10Goebel K, Saha B, Saxena A. A comparison of three data-driven techniques for prognostics [ C ]// Proc of the 62 nd Meeting of the Society For Machinery Failure Prevention Technology ( MF- PT). Virginia Beach, Virginia, USA : [ s. n. ] ,2008 : 119-131.

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部