摘要
考虑3-HPA对细胞生长的抑制作用和底物与产物的跨膜运输方式,建立了能更好描述微生物连续发酵过程的新的数学模型,以计算值与实验稳态数据之间的平均相对误差为优化目标,以多个动力系统为状态约束,建立了参数辨识模型,证明了该辨识模型的参数可辨识性,并构造了改进的粒子群(PSO)算法求解该辨识模型.数值结果表明该新的动力学模型能更好地描述实际微生物连续发酵过程.
Considering the inhibition of 3-HPA to the growth of cells and the mode of transmemberane transport between substrate and product,a novelty mathematical model is established to describe the microbial continuous cultures better.Taking the mean minimal error between calculated values and the experimental data of steady state as the performance index,a parameter identification model involving multiple dynamic systems is presented.The identifiability of the model is also proved.An improved particle swarm optimization(PSO) algorithm is constructed to solve the parameter identification model.Numerical results show that the established model can describe the microbial continuous cultures process better.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2012年第1期150-156,共7页
Journal of Dalian University of Technology
基金
"八六三"国家高技术研究发展计划资助项目(2007AA02Z208)
"九七三"国家重点基础研究发展计划资助项目(2007CB714304)
国家自然科学基金资助项目(10471014
10871033)
数学天元基金资助项目(111260777)
关键词
数学模型
参数辨识
PSO算法
连续发酵
mathematical model
parameter identification
PSO algorithm
continuous cultures