期刊文献+

一种新型的过程模型参数辨识方法 被引量:2

A Novel Method for Parameter Identification of Process Model
下载PDF
导出
摘要 针对模型参数辨识问题,提出了一种基于菌群优化(BSFO)算法的模型参数辨识方法。通过将辨识参数设置为群体细菌在参数空间的位置,并模拟细菌群体觅食的动态行为来实现对参数的寻优,有效地提高了参数辨识的精度和效率。对火电厂热工过程参数辨识的仿真研究验证了本文算法的有效性,结果表明,菌群优化算法能够实现对过程模型参数的有效辨识,仿真结果令人满意。 Aiming at the model parameter identification problem, bacterial swarm foraging for optimization ( BSFO ) algorithm is put forward to identify parameters of the model in this paper. BSFO simulates the social behavior of foraging bacteria, in which the bacteria positions in the parameter spaces are set as the parameters of process model, and the precision and efficiency for parameters identification are improved. The algorithm is applied to thermal process of a power plant. Results indicate that the identification method with BSFO algorithm is valid, and the simulation results are satisfactory.
作者 金建平
出处 《自动化技术与应用》 2012年第1期4-7,共4页 Techniques of Automation and Applications
关键词 菌群优化算法 模型辨识 热工过程 bacterial swarm foraging for optimization ( BSFO ) model identification thermal process
  • 相关文献

参考文献9

二级参考文献18

  • 1黄正良,万百五,韩崇昭.辨识Hammerstein模型的两步法[J].控制理论与应用,1995,12(1):34-39. 被引量:26
  • 2张晓缋,戴冠中,徐乃平.一种新的优化搜索算法──遗传算法[J].控制理论与应用,1995,12(3):265-273. 被引量:96
  • 3徐南荣 宋文忠.系统辨识[M].南京:东南大学出版社,1991..
  • 4[4]Michalewicz, et al. Genetic algorithms and optimal control problem [R].Proc.of 29th IEEE Conf. On Decision and Control, 1990,1664-1666.
  • 5Holland J H. Adaptation in Nature and Artificial Systems [M]. MIT Press, 1992.
  • 6Dorigo Marco, Maniezzo Vittorio, Colorni Alberto. Ant System: Optimization by a Colony of Cooperating Agents [J]. IEEE Transaction on SMC, Part B, 1996, 26(1): 29-41.
  • 7Muller S D, J Airaghi Marchetto S, Koumoutsakos P. Optimization Based on Bacterial Chemotaxis [J]. IEEE Transaction of Evolutionary Computation, 2002, 6(1): 16-29.
  • 8Bremermann H J. Chemotaxis and Optimization [J]. J Franklin Inst , 1974, 297: 397-404.
  • 9Passino K M. Biomimicry of bacterial foraging for distributed optimization and control [J]. IEEE Control System Magazine, 2002-06. 52-67.
  • 10Reynolds C W. Flocks, herd, schools: a distributed behavioral mode [A]. Proceeding of SIGGRAPH'87, Computer Graphics [C]. Anaheim, California. 1987, 21(4): 25-34.

共引文献216

同被引文献16

  • 1段海滨,王道波,黄向华,朱家强.基于蚁群算法的PID参数优化[J].武汉大学学报(工学版),2004,37(5):97-100. 被引量:51
  • 2Passino KM. Biomimicry of bacterial foraging for distributed optimization and control. Control Systems, IEEE, 2002, 22(3):52-67.
  • 3Das S, Dasgupta S, Biswas A, et al. On stability of the chemotactic dynamics in bacterial-foraging optimization algorithm. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Trans. on, 2009, 39(3): 670-679.
  • 4催志华,曾建潮.微粒群优化算法.北京:科学出版社,2011:70-72.
  • 5樊非之.菌群算法的研究及改进.北京:华北电力大学,2013.
  • 6E Bonabeau,M Dorigo,G Theraulaz. Inspiration for optimization from social insect behaviour[J].{H}NATURE,2000,(6):39-42.
  • 7杨淑莹.模式识别与智能计算Matlab计算实现[M]{H}北京:电子工业出版社,2008319-335.
  • 8恩格尔波里特.计算群体智能基础[M]{H}北京:清华大学出版社,2009273-306.
  • 9金以慧.过程控制[M]{H}北京:清华大学出版社,199322-24.
  • 10周雅兰.细菌觅食优化算法的研究与应用[J].计算机工程与应用,2010,46(20):16-21. 被引量:73

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部