期刊文献+

银纳米流体横掠微针肋热沉流动和传热特性分析 被引量:1

原文传递
导出
摘要 采用单步化学湿法(超声膜扩散法)制备出了3种体积分数的水基银纳米流体,实验研究了纳米流体横掠新型水滴形微针肋热沉的流动和传热特性.结果表明:不同体积分数下的纳米流体压降差别很小;相同体积流量下,与基液比较,纳米流体进出口压降略有增加,但增加并不明显;与纯水相比,由于表面活性剂的引入增加了流体粘度,相同流量下,纳米流体的压降稍大于纯水值,但最大差距不超过10%.粒子的体积份额对纳米流体对流换热系数影响较大.纳米粒子的存在对换热性能有明显提高,但过高的黏度对纳米流体的强化传热效果有一定的抑制作用.与去离子水相比,当银粒子体积分数达到0.012%后,纳米流体的综合效果才能逐渐体现.
出处 《中国科学:技术科学》 CSCD 北大核心 2012年第1期65-71,共7页 Scientia Sinica(Technologica)
基金 国家自然科学基金(批准号:51176002) 国家重点基础研究发展计划("973"计划)(批准号:2011CB710704) 北京市属高等学校人才强教计划(批准号:PHR200906104)资助项目
  • 相关文献

参考文献17

  • 1Eastman J A, Choi S U S, Li S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett, 2001, 78:718-720.
  • 2Peles Y, Kosar A, Mishra C, et al. Forced convective heat transfer across a pin fin micro heat sink. Int J Heat Mass Transf, 2005, 48: 3615-3627.
  • 3Ko-ar A, Mishra C, Peles Y. Laminar flow across a bank of low aspect ratio micro pin fins. J Fluids Eng, 2005, 127:419-426.
  • 4Xia G D, Cui Z Z, Li Y J, et al. Flow resistance characteristics of de-ionized water flow through staggered diamond and circular micro pin fin arrays. In: AlP Conference Proceedings, Xi'an, 2010. 446-451.
  • 5Patel H E, Das S K, Sundararajan T, et al. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Appl Phys Lett, 2003, 83:2931-2938.
  • 6Zhu H, Lin Y, Yin Y. A novel one-step chemical method for preparation of copper nanofluids. J Colloid Interf Sci, 2004, 277:100-103.
  • 7Lee S, Choi S U S. Application of metallic nanoparticle suspensions in advanced cooling systems. International Mechanical Engineering Conference Session, Atlanta, 1996.
  • 8李强,宣益民.铜-水纳米流体流动与对流换热特性[J].中国科学(E辑),2002,32(3):331-337. 被引量:26
  • 9Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf, 2004, 47:5181-5188.
  • 10Jung J Y, Oh H S, Kwak H Y. Forced convective heat transfer of nanofluids in microchannels. Int J Heat Mass Transf, 2009, 52:466-472.

二级参考文献18

  • 1GuoZengyuan(过增元).Hot subject of the international heat transfer community microelectronic cooling[J].中国科学基金,1988,2:20-25.
  • 2Choi S U S. Enhancing thermal conductivity of fluid with nanoparticles. ASME, FED, 1995, 231:99-105
  • 3Lee S, Choi S U S, Li S, Eastman J A. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 1999, 121: 280-289
  • 4Wang Xinwei, Xu Xianfan, Choi S U S. Thermal conductivity of nanoparticle fluid mixture. Journal of Thermophysics and Heat Transfer, 1999, 13 ( 4 ) : 474-480
  • 5Xuan Y M, Li Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow, 2000, 21 (1): 58-64
  • 6Wang Xiangqi, Mujumdar A S. Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences, 2007, 46:1-19
  • 7Lee Jaeseon, Mudawar Issam. Assessment of the effectiveness of nanofluids for single phase and two-phase heat transfer in mierochannels. Int. J. Heat Mass Transfer, 2007, 50:452-463
  • 8Lee Donggeun, Kim Jaewon, Kim Bog G. A new parameter to control heat transport in nanofluids: surface charge state ofthe particle in suspension. J. Phys. Chem. B, 2006, 110:4323 4328
  • 9Drew D A. Theory of Multicomponent Fluids. Berlin: Springer, 1999
  • 10Einstein A. Investigation on the Theory of the Brownian Movement. New York: Dover Publication, 1956

共引文献49

同被引文献1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部