期刊文献+

粒子滤波算法改进策略研究 被引量:1

Research on improved strategy for particle filter algorithm
下载PDF
导出
摘要 为了改进粒子滤波算法的性能,这里研究了一种粒子滤波算法改进策略。该粒子滤波算法改进策略包括四部分:首先,采用了结合退火参数的混合建议分布,以考虑当前观测测量值的最新信息;接着,基于有效样本大小确定自适应重采样的阈值,以保证有合适的重采样次数;然后,基于权重优化思想提出了一种改进的部分系统重采样算法,在利用算法执行速度快的同时优化部分系统重采样算法;最后,在重采样后执行粒子变异操作,以保证样本的多样性。通过仿真实验,粒子滤波改进策略的性能和有效性均得以验证。 In order to improve the algorithm performance,this paper studied the improved strategy for particle filter algorithm.The improved strategy for particle filter algorithm mainly included four steps.Firstly,it utilized a hybrid proposal distribution with annealing parameter to consider current information of the latest observed measurement.Moreover,the algorithm determined adaptive resampling threshold by effect sample size in order to assure the appropriate resampling number.Furthermore,it presented an improved partial stratified resampling(PSR) algorithm based on weight optimization,which not only used the implementation advantage of PSR algorithm but also optimized the PSR algorithm.Lastly,particle mutation operation after resampling was implemented to obtain the sample diversity.With the simulation program,the performance of the proposed strategy is evaluated and its validity is verified.
出处 《计算机应用研究》 CSCD 北大核心 2012年第2期459-462,共4页 Application Research of Computers
基金 河南省高校科技创新人才支持计划项目(2009HASTIT021) 河南省高等学校青年骨干教师资助计划(2010GGJS-059) 河南理工大学博士基金资助项目(B2011-58) 河南理工大学青年骨干教师基金资助项目
关键词 粒子滤波 混合建议分布 自适应重采样 基于权重优化的部分系统重采样 粒子变异操作 particle filter(PF) hybrid proposal distribution adaptive resampling PSR algorithm based on weight optimization particle mutation operation
  • 相关文献

参考文献7

  • 1GORDON N J, SALMOND D J, SMITH A F M. Novel approach to non- linear/non-Gaussian Bayesian state estimation [ J ]. IEEE Proceedings on Radar and Signal Processing,1993,140(2) :107-113.
  • 2ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [ J]. IEEE Trans on Signal Processing, 2002,50 (20) : 174- 188.
  • 3于金霞,蔡自兴,段琢华.基于粒子滤波的移动机器人定位关键技术研究综述[J].计算机应用研究,2007,24(11):9-14. 被引量:13
  • 4DOUC R, CAPPE O. Comparison of resampling schemes for particle filtering[ C ]//Proc of Image and Signal Processing and Analysis. Za- greb, Croatia: IEEE Press, 2005: 64-69.
  • 5BOLIC M, DJURIC P, HONG Sang-jin. New resampling algorithms for particle filters [ C ]// Proc of International Conference on Acous- tics, Speech, and Signal Processing. [ S. 1. ] : IEEE Press, 2003 : 589-592.
  • 6谌剑,严平,张静远.权值优化组合粒子滤波算法研究[J].计算机工程与应用,2009,45(24):33-35. 被引量:13
  • 7YU Jin-xia, TANG Yong-li, LIU Wen-jing. Research on the adaptive mechanisms in particle filter[ C ]//Proc of Chinese Control and Deci- sion Conference. [S. 1. ] : IEEE Press, 2010:1316-1321.

二级参考文献63

  • 1莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3厉茂海,洪炳熔,蔡则苏.一种新的移动机器人全局定位算法[J].电子学报,2006,34(3):553-558. 被引量:10
  • 4赵梅,张三同,朱刚.辅助粒子滤波算法及仿真举例[J].北京交通大学学报,2006,30(2):24-28. 被引量:14
  • 5邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):1135-1139. 被引量:43
  • 6COX I J.Blanche:an experiment in guidance and navigation of an autonomous robot vehicle[J].IEEE Transactions on Robotics and Automation,1991,7(2):193-204.
  • 7FOX D,BURGARD W,THRUN S.Markov localization for mobile robot in dynamic environments[J].Journal of Artificial Intelligence Research,1999,11(1):391-427.
  • 8LEONARD J J,DURRANT-WHYTE H F.Mobile robot localization by tracking geometric beacons[J].IEEE Transactions on Robotics and Automation,1991,7(3):376-382.
  • 9FOX D.Markov localization:a probabilistic framework for mobile robot localization and navigation[D].Bonn,Germany:University of Bonn,1998.
  • 10JENSFELT P,CHRISTENSEN H I.Active global localization for a mobile robot using multiple hypothesis tracking[J].IEEE Transactions on Robotics and Automation,2001,17(2):748-760.

共引文献22

同被引文献20

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部