期刊文献+

基于聚类的数据敏感属性匿名保护算法 被引量:4

Clustering-based algorithm for data sensitive attributes anonymous protection
下载PDF
导出
摘要 为了防止数据敏感属性的泄露,需要对数据敏感属性进行匿名保护。针对l-多样性模型当前已提出的算法大多是建立在概念层次结构的基础上,该方法会导致不必要的信息损失。为此,将基于属性泛化层次距离KACA算法中的距离度量方法与聚类结合,提出了一种基于聚类的数据敏感属性匿名保护算法。该算法按照l-多样性模型的要求对数据集进行聚类。实验结果表明,该算法既能对数据中的敏感属性值进行匿名保护,又能降低信息的损失程度。 In order to prevent the disclosure of data sensitive attributes,it requires preserving the anonymity of data sensitive attributes.The current algorithm that has proposed to meet l-diversity is mostly based on the hierarchy,which can lead to unnecessary information loss.For this reason,this paper proposed a clustering-based algorithm for data sensitive attributes anonymous protection,it adopted an improved distance measure method which was from achieving k-anonymity by clustering in attribute hierarchical structures and combined clustering together,the algorithm in accordance with the requirements of l-diversity model clustering of data sets.Experimental results show that the algorithm can not only protect anonymity of sensitive attri-butes in data set,but also reduce the extent of information losses.
出处 《计算机应用研究》 CSCD 北大核心 2012年第2期469-471,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(70971067) 江苏省自然科学基金基础研究计划资助项目(BK2010331)
关键词 敏感属性 l-多样性 聚类 信息损失 sensitive attribute l-diversity clustering information loss
  • 相关文献

参考文献10

  • 1SWEENEY L. K-anonymity: a model for protecting privacy[ J]. In- ternational Journal of Uncertainty, Fuzziness and Knowledge- based Systems,2002,10 (5) :557- 570.
  • 2MACHANAVAJJHALA A, GEHRKE J, KIFER D. L-diversity: pri- vacy beyond k-anonymity[ J]. ACM Trans on Knowledge Disco- very from Data,2007,1 (1) :24-35.
  • 3LEFEVRE K, DEWITrD J, RAMAKRISHNAN R. Incognito: effi- cient full-domain k-anonymity [ C ]//Proc of ACM SIGMOD Interna- tional Conference on Management of Data. New York: ACM Press, 2005,49-60.
  • 4AGGARWAL G, FEDER T, KENTHAPADI T, et al. Achieving ano- nymity via clustering[ C ]//Proc of Symposium on Principles of Data- base Systems. New York: ACM Press, 2006 : 153-162.
  • 5BYUN J W, KAMRA A, BERTINO E, et al. Efficient k-anonymiza- tion using clustering techniques [ C ]//Proc of the 12th International Conference on Database Systems for Advanced Applications. Berlin: Springer-Verlag, 2007 : 188- 200.
  • 6LI Jiu-yong, WONG R C W, FU A W C, et al. Achieving k-anony- mity by clustering in attribute hierarchical structures[ C~//Proc of the 8th International Conference on Data Warehousing and Knowledge Discovery. 2006:405- 416.
  • 7杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 8LIN Jun-lin, WEI Meng-cheng. Genetic algorithm-based clustering approach for k-anonymization [ J ]. Expert Systems with Applica- tions,2009,36(6) :9784-9792.
  • 9LU Li-jian, YE Xiao-jun. An improved weighted-feature clustering algorithm for k-anonymity [ C ]//Proc of the 5th International Confe- rence on Information Assurance and Security. Washington DC: IEEE Computer Society, 2009:415-419.
  • 10于娟 韩建民 郭腾芳 等.基于聚类的高效☆ 匿名化算法.计算机研究与发展,2009,46:105-111.

二级参考文献10

  • 1Sweeney L.K-Anonymity:A model for protecting privacy.Int'l Journal on Uncertainty,Fuzziness and Knowledge Based Systems,2002,10(5):557-570.
  • 2Liu XY,Yang XC,Yu G.A representative classes based privacy preserving data publishing approach with high precision.Computer Science,2005,32(9A):368-373 (in English with Chinese abstract).
  • 3Meyerson A,Williams R.On the complexity of optimal k-anonymity.In:Deutsch A,ed.Proc.of the 23rd ACM SIGACT-SIGMOD-SIGART Symp.on Principles of Database Systems (PODS 2004).New York:ACM,2004.223-228.
  • 4Aggarwal G,Feder T,Kenthapadi K,Motwani R,Panigrahy R,Thomas D,Zhu A.Anonymizingtables.In:Eiter T,Libkin L,eds.Proc.of the 10th Int'l Conf.on Database Theory (ICDT 2005) LNCS 3363,Springer-Verlag,2005.246-258.
  • 5Iyengar V.Transforming data to satisfy privacy constraints.In:Zaiane O,ed.Proc.of the 8th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining (KDD 2002).New York:ACM,2002.279-288.
  • 6Yao C,Wang XS,Jajodia S.Checking fork-anonymity violation by views.In:Bohm K,Jensen CS,Hass LM,Kersten ML,Larson P,Ooi BC,eds.Proc.of the 31st Int'l Conf.on Very Large Data Bases (VLDB 2005).Trondheim:ACM,2005.910-921.
  • 7Sweeney L.Guaranteeing anonymity when sharing medical data,the Datafly system.In:Masys DR,ed.Proc.of the 1997American Medical Informatics Association Annual Fall Symp (AMIA'97).1997.51-55.http://www.amia.org/pubs/symposia/D004462.pdf
  • 8LeFevre K,DeWitt D,Ramakrishnan R.Incognito:Efficient full-domain k-anonymity.In:Ozcan F,ed.Proc.of the ACM SIGMOD Int'l Conf.on Management of Data.New York:ACM,2005.49-60.
  • 9Fung B,Wang K,Yu P.Top-Down specialization for information and privacy preservation.In:Toyama M,Sasaki S,eds.Proc.of the 21st Int'l Conf.on Data Engineering (ICDE 2005).Tokyo:IEEE Computer Society,2005.205-216.
  • 10Sweeney L.Achieving k-anonymity privacy protection using generalization and suppression.Int'l Journal on Uncertainty,Fuzziness and Knowledge-Based Systems,2002,10(5):571-588.

共引文献59

同被引文献36

  • 1武毅,王丹,蒋宗礼.基于事务型K-Anonymity的动态集值属性数据重发布隐私保护方法[J].计算机研究与发展,2013,50(S1):248-256. 被引量:7
  • 2于戈;李芳芳.物联网中的数据管理[J]{H}中国计算机学会通讯,2010(04):30-34.
  • 3丁治明.物联网对软件技术的挑战及其对策[J]{H}中国计算机学会通讯,2011(01):49-50.
  • 4Sweeney L. K-anonymity:A model for protecting privacy[J].International Journal on certainty Fuzziness and Knowledgn-based Systems,2002,(05):557-570.
  • 5Machanavajjhala A,Gehrke J,Kifer D. L-diversity:Privacy beyond k-anonymity[A].Atlanta,GA,USA:IEEE Press,2006.24-36.
  • 6Machanavajjhala A,Kifer D,Gehrke J. l-diversity:Privacy beyond k-anonymity[J].ACM Transactions on Knowledge Discovery from Data,2007,(01):1-52.
  • 7Wong R,Li J,Fu A. (α,k)-Anonymous data publishing[J].{H}JOURNAL OF INTELLIGENT INFORMATION SYSTEMS,2009,(02):209-234.
  • 8Aggarwal G,Feder T,Kenthapadi K. Achieving anonymity via clustering[A].{H}New York:ACM Press,2006.153-162.
  • 9朱玉全,胡天寒,陈耿,常鹏.序列模式挖掘中的隐私保护方法研究[J].计算机应用研究,2009,26(7):2489-2491. 被引量:4
  • 10张颖君,冯登国.基于尺度的时空RBAC模型[J].计算机研究与发展,2010,47(7):1252-1260. 被引量:20

引证文献4

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部