期刊文献+

含causal算子分数阶非线性微分方程的拟线性方法 被引量:1

Quasilinearization for solution of nonlinear causal fractional differential equations
下载PDF
导出
摘要 采用拟线性化方法讨论了含causal算子的分数阶非线性微分方程初值问题,通过构造2个单调迭代序列,证明了它们一致且平方收敛于给出问题的解. By using the quasilinearization method for causal fractional differential equations,the authors construct two monotone sequences,then prove that they both converge uniformly and quadratically to the solution of the given problem.
出处 《河北大学学报(自然科学版)》 CAS 北大核心 2012年第1期1-6,共6页 Journal of Hebei University(Natural Science Edition)
基金 国家自然科学基金资助项目(10971045) 河北省自然科学基金资助项目(A2009000151)
关键词 拟线性方法 causal算子 分数阶微分方程 平方收敛 quasilinearization method causal operator fractional differential equations quadratic convergence
  • 相关文献

参考文献10

  • 1LAKSHMIKANTHAM V, VATSALA A S. Generalized quasilinearization for nonlinear problems[M]. Dordreeht: Klu- wer Academic Publishers,1998.
  • 2LAKSHMIKANTHAM V, LEELA S, DRICI Zahia etc. Theory of causal differential equations[M]. World ScientKie: Atlantis Press, 2009.
  • 3GENG Fengjie. Differential equations involving causal operators with nonlinear periodic boundary conditions[J]. Mathe- matical and Computer Modelling, 2008, 48,859 - 856.
  • 4JANKOWSKI T. Boundary value problems with causal operators[J]. Nonlinear Analysis, 2008, 68:3625 -3632.
  • 5DIETHELM K, FORD N J. Analysis of fractional differential equations[J]. Anal Appl, 2002, 265(2) :229 - 248.
  • 6CAPUTO M. Linear models of dissipation whose Q is almost independent Ⅱ[J]. Geophys J R Astron, 1967, 13 (5) : 529 - 539.
  • 7VASNUDHARA DEVI J, MCREA F A, DRICI Z. Generaized quasilinearization for fractional differential equations[J]. Comp Math Appl, 2010, 59(3) :1057 - 1062.
  • 8VASNUDHARA DEVI J, SUSEELA CH. Quasilinearization for fractional differential equations[J]. Communications in Applied Analysis, 2008, 12(4) :407 - 418.
  • 9VASNUDHARA DEVI J. Generalized monotone method for periodic boundary value problems of Caputo fractional differ- ential equations[J]. Communications in Applied Analysis, 2008, 12(4), 399 -406.
  • 10王培光,高玮.集值微分方程初值问题的拟线性化方法[J].河北大学学报(自然科学版),2011,31(1):1-6. 被引量:5

二级参考文献8

  • 1TOLSTONOGOV A. Differential Inclusions in a Banach Space[M]. Dordrecht:Kluwer Academic Publishers,2000.
  • 2BHASKAR T, LAKSMIKANTHAM V. Set differential equations and flow invariance[J]. Appl Anal, 2003,82 : 357-368.
  • 3BHASKAR T, LAKSMIKANTHAM V. Lyapunov stability for set differential equations[J]. Dynam Systems Appl, 2004, 13:1-10.
  • 4LAKSMIKANTHAM V, LEELA S,VATSALA A. Interconneetion between set and fuzzy differential equations[J]. Nonlinear Anal, 2003,54 : 351-360.
  • 5RADSTROM H. An embedding theorem for space of convex sets[J]. Proc AM Math Soc, 1952,3:165-169.
  • 6LAKSMIKANTHAM V,VATSALA A. Set differential equations and monotine flows[J]. Nolinear Dyn Sys, 2003,3(2): 151-161.
  • 7LAKSMIKANTHAM V, VATSALA A. Generalized quasilinearization for nonlinear problems[M]. Dordrecht:K|uwer Academic Publishers, 1998.
  • 8王培光,卢艳霞.时间尺度上三点边值问题的拟线性方法[J].河北大学学报(自然科学版),2008,28(1):1-3. 被引量:2

共引文献4

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部