期刊文献+

Analysis of SE~τ IR~ω S Epidemic Disease Models with Vertical Transmission in Complex Networks 被引量:3

Analysis of SE~τ IR~ω S Epidemic Disease Models with Vertical Transmission in Complex Networks
原文传递
导出
摘要 When the role of network topology is taken into consideration, one of the objectives is to understand the possible implications of topological structure on epidemic models. As most real networks can be viewed as complex networks, we propose a new delayed SETIRWS epidemic disease model with vertical transmission in complex networks. By using a delayed ODE system, in a small-world (SW) network we prove that, under the condition R0 ≤ 1, the disease-free equilibrium (DFE) is globally stable. When R0 〉 1, the endemic equilibrium is unique and the disease is uniformly persistent. We further obtain the condition of local stability of endemic equilibrium for R0 〉 1. In a scale-free (SF) network we obtain the condition R1 〉 1 under which the system will be of non-zero stationary prevalence. When the role of network topology is taken into consideration, one of the objectives is to understand the possible implications of topological structure on epidemic models. As most real networks can be viewed as complex networks, we propose a new delayed SETIRWS epidemic disease model with vertical transmission in complex networks. By using a delayed ODE system, in a small-world (SW) network we prove that, under the condition R0 ≤ 1, the disease-free equilibrium (DFE) is globally stable. When R0 〉 1, the endemic equilibrium is unique and the disease is uniformly persistent. We further obtain the condition of local stability of endemic equilibrium for R0 〉 1. In a scale-free (SF) network we obtain the condition R1 〉 1 under which the system will be of non-zero stationary prevalence.
作者 Xia LIU De-ju XU
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第1期63-74,共12页 应用数学学报(英文版)
关键词 SETIRWS SW network SF network DFE SETIRWS, SW network, SF network, DFE
  • 相关文献

参考文献2

二级参考文献25

  • 1W.O. Kermack and A.G. McKendrick, Proc. Roy. Soc. A 115 (1927) 700.
  • 2A-L. Barabfisi and R. Albert, Science 286 (1999) 509.
  • 3F. Liljeros, C.R. Edling, et al., Nature (London) 411 (2001) 907.
  • 4J.Z. Liu, et al., J. Star. Mech. (2004) P08008.
  • 5R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 63 (2001) 066117.
  • 6R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86 (2001) 3200.
  • 7M.E.J. Newman, Phys. Rev. E 66 (2002) 016128.
  • 8E. Massad, et al., Appl. Math. Comput. 195 (2007) 376.
  • 9J.M. Hyman and J. Li, Math. Biosci. 167 (2000) 65.
  • 10T. Zhou, J.G. Liu, et al., Phys. Rev. E 74 (2006) 056109.

共引文献17

同被引文献22

  • 1汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012.
  • 2KEPHART J O,WHITE S R. Directed-graph Epidemiological Models of Computer Viruses [M]. IEEE Comput Soc Symp Res Secur Privacy, 1991 : 343-359.
  • 3BARABASI A L, ALBERT R. Emergence of Scaling in Random Networks[J]. Science, 1999,286:509-512.
  • 4PASTOR S R,VESPIGNANI A. Epidemic Spreading in Scale-free Networks[J]. Physical Review Letters, 2001,86 : 3200- 3203.
  • 5YANG L, YANG X,LIU J, et al. Epidemics of Computer Viruses: A complemnetwork Approach [J]. Applied Mathematics and Computation, 2013,219:8705-8717.
  • 6YANF X, YANG L X. Towards the Epidemiological Modeling of Computer Viruses[J]. Discrete Dyn Nat Soc, 2012,259: 671-681.
  • 7GAN C,YANG X,LIU W,et al. An Epidemic Model of Computer Viruses with Vaccination and Generalized Nonlinear In- cidence Rate[J]. Applied Mathematics and Computation, 2013,222:265-274.
  • 8PRAPANPORN R, KONSTANTIN B. A Class of Pairwise Models /or Epidemic Dynamics on Weighted Networks[J]. Bull Math Biol,2013,75:466-490.
  • 9ZHANG J,JIN Z. Epidemic Spreading on Complex Networks with Community Structure[J]. Applied Mathematics and Computation, 2012,219 .. 2829-2838.
  • 10GAN C,YANG X, LIU W,et al. An Epidemic Model of Computer Viruses with Vaccination and Generalized Nonlinear Incidence Rate[J]. Applied Mathematics and Computation,2013,222: 265-274.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部