期刊文献+

Componentwise Complementary Cycles in Multipartite Tournaments

Componentwise Complementary Cycles in Multipartite Tournaments
原文传递
导出
摘要 The problem of complementary cycles in tournaments and bipartite tournaments was completely solved. However, the problem of complementary cycles in semicomplete n-partite digraphs with n 〉 3 is still open. Based on the definition of componentwise complementary cycles, we get the following result. Let D be a 2-strong n-partite (n 〉 6) tournament that is not a tournament. Let C be a 3-cycle of D and D / V(C) be nonstrong. For the unique acyclic sequence D1, D2,..., Da of D / V(C), where a 〉 2, let Dc = {Di|Di contains cycles, i = 1,2,...,a}, Dc = {D1,D2,...,Da} / De. If Dc≠ 0, then D contains a pair of componentwise complementary cycles. The problem of complementary cycles in tournaments and bipartite tournaments was completely solved. However, the problem of complementary cycles in semicomplete n-partite digraphs with n 〉 3 is still open. Based on the definition of componentwise complementary cycles, we get the following result. Let D be a 2-strong n-partite (n 〉 6) tournament that is not a tournament. Let C be a 3-cycle of D and D / V(C) be nonstrong. For the unique acyclic sequence D1, D2,..., Da of D / V(C), where a 〉 2, let Dc = {Di|Di contains cycles, i = 1,2,...,a}, Dc = {D1,D2,...,Da} / De. If Dc≠ 0, then D contains a pair of componentwise complementary cycles.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第1期201-208,共8页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (No. 10801114) the Nature Science Foundation of Shandong Province, China (No. ZR2011AL019 No. ZR2011AM005)
关键词 complementary cycles componentwise complementary cycles multipartite tournaments complementary cycles, componentwise complementary cycles, multipartite tournaments
  • 相关文献

参考文献8

  • 1Bondy, J.A. Diconnected orientation and a conjecture of Las Vergnas. J. London Math. Soc., 14:277 282 (1976).
  • 2Cuo, Y., Pinkernell, A., Volkmann, L. On cycles through a given vertex in multipartite tournaments. Discrete Math., 164:165-170 (1997).
  • 3Gutin, G. On cycles in multipartite tournaments. J. Combin. Theory Ser.B., 58(2): 319 321 (1993).
  • 4Jcrgen, B.-J., Gregory, Z.G. Digraphs Theory Algorithms and Applications. Springer-Verlag, London Limited, 2001.
  • 5Reid, K.B. Two complementary circuits in two-connected tournaments. Ann. Discrete Math., 27:321-334 (1985).
  • 6Song, Z.M. Complementary cycles of all lengths in tournaments. J. Combin. Theory Set. B., 57(1): 18-25 (1993).
  • 7Tewes, M., Volkmann, L. Vertex deletion and cycles in multipartite tournaments. Discrete Math., 197: 769-779 (1999).
  • 8Volkmann, L. Cycles in multipartite tournaments: results and problems. Discrete Math., 245: 19-53 (2002).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部