期刊文献+

基于整车性能的液压减振器虚拟调校 被引量:2

Virtual tuning of shock absorber characteristics based on vehicle dynamic performances
下载PDF
导出
摘要 为使减振器对车辆具有最佳减振效果,利用Rebrouck建模方法,建立了反映液压减振器阀系特性的参数化动力学模型,并将该减振器动力学模型以S-Function的形式嵌入到CarsimTM的某E-Class整车模型中。以整车动力学性能为优化目标,使用NSGA-II多目标优化算法,在扫频工况下,对车辆前、后轴减振器的阻尼力特性进行了虚拟调校。计算结果表明,经调校以后的液压减振器阻尼特性使得整车的动力学性能得到了较大程度的改善。 To optimize the damping characteristics of the vehicle,a dynamic model with lumped parameters was built for the shock absorber to reflect physical effects of its valve systems and it was embedded in an E-Class vehicle model of CarsimTM using the S-Function.Taking the vehicle dynamic performances as the optimization objectives,the front and rear axle damping characteristics of the vehicle were tuned using the non-dominated sorting genetic algorithm(NSGA-Ⅱ)under frequency sweep conditions.The computation results show that vehicle dynamic performances concerned are grealty improved after virtual tuning of the shock absorber.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第1期1-6,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 '863'国家高技术研究发展计划项目(2006AA110103)
关键词 车辆工程 减振器动力学模型 非支配排序遗传算法 虚拟调校 车辆动力学 vehicle engineering shock absorber dynamic model non-dominated sorting genetic algorithm(NSGA-II) virtual tuning vehicle dynamics
  • 相关文献

参考文献6

  • 1Reybrouck K. A non linear parametric model of an automotive shock absorber [ C ] // SAE Paper, 940869, 1994.
  • 2Duym S, Stiensa R, Reybrouck K. Evaluation of shock absorber models, vehicle system dynamics [J]. International Journal of Vehicle Mechanics and Mobility, 1997,27: 109-127.
  • 3Duym S W R. Nonparametric identification of non- linear mechanical systems[D], lxelles. Vrije Uni- versiteit Brussel, 1998.
  • 4Duym S W R. Simulation tools, modelling and iden- tification, for an automotive shock absorber in the context of vehicle dynamics, vehicle system dynam- ics[J]. International Journal of Vehicle Mechanics and Mobility, 2000, 33: 261-285.
  • 5郭孔辉,郭耀华.基于非支配排序遗传算法的感载比例阀静特性多目标优化设计[J].汽车技术,2010(10):1-4. 被引量:1
  • 6Deb Kalyanmoy, Pratap Amrit, Agarwal Sameer, et al. A fast and elitst multiobjeetive genetic algorithm NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2) : 182-197.

二级参考文献8

同被引文献11

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部