期刊文献+

Sharp Observability Inequalities for the 1-D Plate Equation with a Potential 被引量:1

Sharp Observability Inequalities for the 1-D Plate Equation with a Potential
原文传递
导出
摘要 This paper deals with the problem of sharp observability inequality for the 1-D plate equation wtt + wxxxx + q(t, x)w = 0 with two types of boundary conditions w = wxx = 0 or w = wx = 0, and q(t, x) being a suitable potential. The author shows that 2 the sharp observability constant is of order exp(C||q||^2/7∞) for ||q||∞〉 1. The main tools to derive the desired observability inequalities are the global Carleman inequalities, based on a new point wise inequality for the fourth order plate operator.
作者 Xiaoyu FU
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第1期91-106,共16页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China (No. 10901114) the Doctoral Fund for New Teachers of the Ministry of Education of China (No. 20090181120084) the National Basic Research Program of China (No. 2011CB808002)
关键词 Observability inequality Plate equation Point-wise estimate Carlemanestimate 不等式 可观测性 方程 D盘 夏普 边界条件 可观性 运营商
  • 相关文献

参考文献16

  • 1Doubova, A., Fernandez-Cara, E., Gonzalez-Burgos, M. and Zuazua, E., On the controllability of parabolic systems with a nonlinear term involving the state and the gradient, SIAM J. Control Optim., 41, 2002, 798-819.
  • 2Duyckaerts, D., Zhang, X. and Zuazua, E., On the optimality of the observability inequality for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincarg Anal. Non Lindaire, 26, 2008, 1-41.
  • 3Fernandez-Cara, E. and Zuazua, E., The cost of approximate controllability for heat equations: the linear case, Advances Diff. Eqs., 5, 2000, 465-514.
  • 4Fu, X., Yong, J. and Zhang, X., Exact controllability for the multidimensional semilinear hyperbolic equations, SIAM J. Control Optim., 46, 2007, 1578-1614.
  • 5Fu, X., Zhang, X. and Zuazua, E., On the optimality of the observability inequalities for plate systems with potentials, Phase Space Analysis of Partial Differential Equations, A. Bove, F. Colombini and D. Del Santo (eds.), Birkhauser, Boston, 2006, 117-132.
  • 6Komornik, V., Exact Controllability and Stabilization: The Multiplier Method, John Wiley &: Sons, Masson, Paris, 1995.
  • 7Lopez, A., Zhang, X. and Zuazua, E., Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations, J. Math. Pures Appl., 79, 2000, 741-808.
  • 8Lin, P. and Zhou, Z., Observability estimate for a one-dimensional fourth order parabolic equation, Proceedings of the 29th Chinese Control Conference, Beijing, China, 2010, 830-832.
  • 9Lions, J. L., Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 30, 1988, 1-68.
  • 10Machtyngier, E., Exact controllability for the Schrodinger equation, SIAM J. Control Optim., 32, 1994, 24-34.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部