期刊文献+

隐私团校准的模糊MEB学习 被引量:1

Privacy cloud calibration fuzzy learning for MEB
原文传递
导出
摘要 在一定条件下,基于最小累积平方误差(ISE)准则的高斯核密度估计与最小包含球(MEB)等价.在此基础上提出了一种含团状隐私数据保护的MEB学习方法,称为隐私团校准的MEB(PCC-MEB)方法;同时,通过引入模糊隶属度函数将PCC-MEB拓展为模糊的PCC-MEB(FPCC-MEB),从而解决二类及多类问题中区域不可分问题.人造和真实数据集上的实验结果表明,所提出方法具有较好的性能. Under given conditions,Gaussian kernel density estimate with minimum integrated square error(ISE) criterion can be equivalent to the minimum enclosing ball(MEB).Based on this conclusion,a learning method of MEB with privacy cloud data is proposed,called privacy cloud calibration MEB(PCC-MEB).Meanwhile,PCC-MEB is extended to fuzzy privacy cloud calibration MEB(FPCC-MEB) by introducing a fuzzy membership function,which can resolve unclassifiable zones among classes.Experimental results on the artificial and real-word data sets show the effectiveness of presented method.
出处 《控制与决策》 EI CSCD 北大核心 2012年第2期221-226,共6页 Control and Decision
基金 国家自然科学基金项目(60903100 60975027) 江苏省普通高校研究生科研创新计划项目(CXZZ11 0483)
关键词 最小包含球 核密度估计 隐私数据团 核方法 模糊 minimum enclosed ball(MEB) kernel density estimator privacy data cloud kernel method fuzzy
  • 相关文献

参考文献17

  • 1Rtlping S. SVM classifier estimation from group probabilities[C]. Proc of 27th ICML, Haifa, 2010: 911- 918.
  • 2Quadrianto N, Smola A J, Caetano T S, et al. Estimating labels from label proportions[C]. Proc of 25th ICML. Onmipress, 2008: 776-783.
  • 3Quadrianto N, Smola A J, Caetano T S, et al. Estimating labels from label proportions[J]. J of Machine Learning Research, 2009, 10." 2349-2374.
  • 4Hendrik K, Nando de E Learning about individuals from group statistics[C]. Proc of 21st Annual Conf on Uncertainty in Artificial Intelligence. Arlington: AUAI Press, 2005: 332-339.
  • 5David M J T, Robert P W D. Support vector data description[J]. Machine Learning, 2004, 54(1): 45-66.
  • 6Chung F L, Wang S T, Deng Z H, et al. Fuzzy kernel hyperball perceptron[J]. Applied Soft Computing, 2004, 5(1): 67-74.
  • 7Alan J I. Recent developments in nonparametric density estimation[J]. J of the American Statistical Association,1991, 86(413): 205-224.
  • 8Mark G, He C. Probability density estimation from optimally condensed data samples[J]. IEEE Trans on PAMI, 2003, 25(10): 1253-1264.
  • 9JooSeuk K, Clayton S. Kernel classification viaintegratedstatistical squared error[C]. Proc of IEEE Workshop on Signal Processing. Madison, 2007: 783-787.
  • 10JooSeuk K, Clayton S. Robust kernel density estimation[C]. Proc of IEEE ICASSP. Las Vegas, 2008: 3381-3384.

二级参考文献10

  • 1张正道,胡寿松.基于未知输入观测器的非线性时间序列故障预报[J].控制与决策,2005,20(7):769-772. 被引量:6
  • 2Zhang L B, Wang Z H, Zhao S X. Short-term fault prediction of mechanical rotating parts on the basis of fuzzy-grey optimizing method[J].Mechanical Systems and Signal Processing, 2007, 21(2): 856-865.
  • 3Manel Martinez-Ramon, Jose Luis Rojo-Alvarez, Gustavo Camps-Vails, et al. Support vector machines for nonlinear kernel ARMA system identification [J].IEEE Trans on Neural Networks, 2006, 17(6) : 1617- 1622.
  • 4Jose Luis Rojo-Alvarez, Manel Martinez-RamOn, Mario de Prado-Cumplido, et al. Support vector method for robust ARMA system identification[J]. IEEE Trans on Signal Processing, 2004, 52(1): 155-164.
  • 5Shi Z W, Han M. Support vector echo-state machine for chaotic time-series prediction[J]. IEEE Trans on Neural Networks, 2007, 18(2): 359-372.
  • 6Hyoung-joo Lee, Sungzoon Cho. Focusing on non- respondents: Response modeling with novelty detectors [J].Expert Systems with Applications, 2007, 33(2): 522-530.
  • 7Tran Quang Anh, Li Xing, Duan Haixin. Efficient performance estimate of one-class support vector machine[J]. Pattern Recognition Letters, 2005, 26(8): 1174-1182.
  • 8David M J Tax, Robert P W Duin. Support vector data description[J]. Machine Learning, 2004, 54: 45-66.
  • 9Manuel Davy, Frederic Desobry, Arthur Gretton, et al. An online support vector machine for abnormal events detection[J]. Signal Processing, 2006, 86 (8) : 2009- 2025.
  • 10Jaewook Lee, Daewon Lee. Dynamic characterization of cluster structures for robust and inductive support vector clustering[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1869-1874.

共引文献1

同被引文献14

  • 1Wei L, Zhu H, Cao Z, et al. Security and privacy for stor- age and computation in cloud computing [J]. Information Sciences, 2014, 258:371-386.
  • 2Dubey A K, Namdev M, Shrivastava S S. Cloud -user se- curity based on RSA and MD5 algorithm for resource attes- tation and sharing in java environment[C]. Proceedings of IEEE sixth International Conference on Software Engineer- ing (CONSEG), Toronto, Canada 2012 : 1 - 8.
  • 3Maganis G, Shi E, Chen H, et al. Opaak: using mobile phones to limit anonymous identities online [C]. Proceed- ings of the 10th ACM international conference on Mobile systems, applications, and services. New York, USA, 2012 : 295 - 308.
  • 4Wu L, Garg S K, Buyya R. Sla- based resource allocation for software as a service previder(saas) in cloud computing environments [C]. Proceedings of IEEE 11 th International Conference on Cloud and Grid Computing (CCGrid), Las Vegas, USA,2011:195 -204.
  • 5Xu L, Wu X, Zhang X. CL - PRE : a certificateless proxy re- encryption scheme for secure data sharing with public cloud [C]. Proceedings of the 7th ACM Symposium on Infor- mation, Computer and Communications Security, New York, USA,2012:87-88.
  • 6Wang G, Liu Q, Wu J, et al. Hierarchical attribute - based encryption and scalable user revocation for sharing data in cloud servers[J], computers & security, 2011, 30 (5): 320-331.
  • 7Mourik V, Zuo K, Frolov S M, et al. Signatures of Majora- na fermions in hybrid superconductor- semiconductor nanowire devices [J]. Science, 2012,336 (6084) : 1003 - 1007.
  • 8Venkatakrishnan A J, Deupi X, Lebon G, et al. Molecular signatures of G - protein - coupled receptors [J]. Nature, 2013, 494(7436) : 185 - 194.
  • 9Liberzon A, Subramanian A, Pinchback R, et al. Molecu- lax signatures database (MSigDB) 3.0 [J]. Bioinformatics, 2011,27(12) : 739 - 1740.
  • 10CirieUo G, Miller M L, Aksoy B A, et al. Emerging land- scape of oncogenic signatures across human cancers [J]. Nature genetics, 2013, 45(10) : 1127 - 1133.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部