期刊文献+

一类纯反馈非线性系统的简化自适应神经网络动态面控制 被引量:9

Simplified adaptive neural dynamic surface control for a class of nonlinear systems in pure feedback form
原文传递
导出
摘要 针对一类完全非仿射纯反馈非线性系统,提出一种简化的自适应神经网络动态面控制方法.基于隐函数定理和中值定理将未知非仿射输入函数进行分解,使其含有显式的控制输入;利用简化的神经网络逼近未知非线性函数,对于阶SISO纯反馈系统,仅一个参数需要更新;动态面控制可消除反推设计中由于对虚拟控制反复求导而导致的复杂性问题.通过Lyapunov稳定性定理证明了闭环系统的半全局稳定性,数值仿真验证了方法的有效性. A simplified adaptive neural dynamic surface control approach is proposed for a class of completely non-affine pure-feedback nonlinear systems.By using implicit function theorem and mean value theorem,unknown non-affine input functions can be transformed to partially affine forms.The simplified neural networks are used to approximate the unknown nonlinearities in systems,and for a-th order strict feedback nonlinear system,only one parameter is needed to be estimated on-line.The problem of explosion of terms in traditional backstepping design is eliminated by utilizing dynamic surface control.It is proved that the developed method can guarantee the semi-global stability of the close-loop system.Simulation results show the effectiveness of the proposed approach.
出处 《控制与决策》 EI CSCD 北大核心 2012年第2期266-270,共5页 Control and Decision
基金 国家自然科学基金项目(60904038) 空军工程大学学术基金项目(XS0901014)
关键词 自适应控制 动态面控制 神经网络 纯反馈系统 adaptive control dynamic surface control neural network pure-feedback systems
  • 相关文献

参考文献13

  • 1董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用[J].控制与决策,2006,21(10):1081-1086. 被引量:33
  • 2Krstic M, KaneUakopoulos I, Kokotovic E Nonlinear and adaptive control design[M]. New York: Wiley, 1995.
  • 3Ge S S, Hang C C, Lee T H, et al. Stable adaptive neural network control[M]. Norwell: Kluwer Academic, 2001.
  • 4Ge S S, Wang C. Adaptive NN control of uncertain nonlinear pure-feedback systems[J]. Automatica, 2002, 38(4): 671-682.
  • 5Wang D, Huang J. Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form[J]. Automatica, 2002, 38(8): 1365-1372.
  • 6Wang C, Hill D J, Ge S S, et al. An ISS-modular approach for adaptive neural control of pure-feedback systems[J]. Automatica, 2006, 42(5): 723-731.
  • 7Du Hongbin, Shao Huihe, Yao Pingjing. Adaptive neural network control for a clasS of low-triangular-structured nonlinear systems[J]. IEEE Trans on Neural Networks, 2006, 17(2): 509-514.
  • 8Ren B, Ge S S, Lee T H, et al. Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input[C]. Proc of the 47th IEEE Conf on Decision and Control Cancun. Mexico, 2008: 86-91.
  • 9Swaroop D, Hedrick J K, Yip P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Trans on Automatic Control, 2000, 45(10): 1893-1899.
  • 10Zhang T E Ge S S. Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form[J]. Automatica, 2008, 44(7): 1895-1903.

二级参考文献56

共引文献32

同被引文献81

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部