期刊文献+

并行Agent仿真研究综述 被引量:7

Review of Parallel Agent-based Simulation
下载PDF
导出
摘要 作为一种研究复杂系统的有效途径,基于Agent的建模仿真方法得到了广泛应用,但随着应用规模和复杂度的增加,仿真运行速度成为制约其应用的一个重要因素。并行Agent仿真通过将Agent模型分配到多个处理单元上同时运行来减少仿真运行时间,是提高仿真运行速度的一个直接手段。根据基于Agent的建模仿真的基本思想,分析了并行Agent仿真区别于传统的并行离散事件仿真的新特点,着重从时间同步协议、负载均衡、通信优化三方面阐述了并行Agent仿真的研究现状,并对基于通用目的图形处理器的并行Agent仿真进行了讨论。最后对并行Agent仿真未来的研究方向进行了展望。 As an effective approach to study complex systems, the method of Agent-based Modeling and Simulation (ABMS) is used widely in many research fields, but as the scale and complexity of its applications enlarge, the execution speed becomes an obstacle to implement ABMS. Parallel Agent-based Simulation (PABS) aims at reducing the execution time through executing concurrently the Agent models distributed on different process units, which is a direct approach to improve the execution speed. According to the principles of ABMS, the new characteristics of PABS that are different from Parallel Discrete Event Simulation were proposed. The overview about PABS was elaborated from the aspects of time synchronization algorithms, load balancing and communication optimizing. PABS based on general purpose graphics processing units was discussed. At last, some future research directions about PABS were proposed.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第2期245-251,共7页 Journal of System Simulation
基金 国家自然科学基金(60974073 60974074)
关键词 并行Agent仿真 时间同步协议 负载均衡 通信优化 通用目的图形处理器 parallel Agent-based simulation time synchronization algorithms load balancing communicationoptimizing general purpose graphics processing units (GPGPU)
  • 相关文献

参考文献46

  • 1Charles M Macal, Michael J North. Agent-Based Modeling and Simulation [C]// Proceedings of the 2009 Winter Simulation Conference. Austin, USA: IEEE Press, 2009: 86-98.
  • 2R Cirillo, T Overbye. Evaluating the Potential Impact of Transmission Constraints on the Operation of a Competitive Electricity Market in Illinois [R]. USA: Argonne National Laboratory, ANL-06/16, 2006.
  • 3Charles M Macal, Michael J North, Gail Pieper, Cheryl Drugan. Agent-based Modeling and Simulation for Exascale Computing [J]. SciDAC Review (S1935-0570), 2008, 3(2): 34-41.
  • 4Richard M Fujimoto. Parallel And Distributed Simulation Systems [C]// Proceedings of the 2001 Winter Simulation Conference. Arlington, USA: IEEE Press, 2001: 147-157.
  • 5A M Uhrmacher, K Gugler. Distributed, Parallel Simulation of Multiple, Deliberative Agents [C]// Proceedings of the 14th Workshop on Parallel and Distributed Simulation (PADS'00). Bologna, Italy: ACM Press, 2000:101-110.
  • 6Brian Logan, Georgios Theodoropoulos. The distributed simulation of multi-agent systems [J]. Proceedings of the IEEE Special Issue on Agent-oriented Software Approaches in Distributed Modeling and Simulation (S0018-9219), 2001, 89(2): 174-185.
  • 7Michael Lees, Brian Logan, Rob Minson, Ton Oguara, Georgios Theodoropoulos. Distributed Simulation of MAS [C]// Proceedings of the Joint Workshop on Multi-Agent and Multi-Agent-Based Simulation'04. New York, USA: Springer Press, 2004: 21-30.
  • 8Wooldridge M J, Jennings N R. Intelligent agents: Theory and Practice [J]. Knowledge Engineering Reviews (S0269-8889), 1995, 10(2): 115-152.
  • 9李群,王维平,朱一凡,雷永林,梅珊.仿真模型设计与执行[M].北京:电子工业出版社,2009.
  • 10丁浩,杨小平.SWARM—一个支持人工生命建模的面向对象模拟平台[J].系统仿真学报,2002,14(5):569-572. 被引量:40

二级参考文献40

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 3曹慕昆,冯玉强.基于多Agent计算机仿真实验平台Swarm的综述[J].计算机应用研究,2005,22(9):1-3. 被引量:18
  • 4米歇尔·沃尔德罗普 陈玲(译).复杂[M].三联书店,1997,1.96.
  • 5Alder B J, Wainwright T. Molecular dynamics by electronic computers. In: Prigogine I, eds. Proceeding of International Symposium on Transport Processes in Statistical Mechanics. Brussels: Interscience, New York: Wiley, 1956.97-131.
  • 6Moore G E. Cramming more components onto integrated circuits. Electronics, 1965, 38(8): 114-117.
  • 7NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Programming Guide Version 2.0. 2008.
  • 8Belleman R G, Bedorf J, Zwart S F P. High performance direct gravitational N-body simulations on graphics processing units Ⅱ : An implementation in CUDA. New Astron, 2008, 13(2): 103-112.
  • 9Tolke J. Implementation of a Lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA. Comput Visual Sci, 2008, DOI: 10.1007/s00791-008-0120-2.
  • 10van Meel J A, Arnold A, Frenkel D, Zwart S F P, Belleman R G. Harvesting graphics power for MD simulations. Mol Simulat, 2008, 34(3): 259-266.

共引文献233

同被引文献57

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部