期刊文献+

辐射热传导问题的SFVE格式与数值仿真

SFVE Schemes for Radiative Heat Conduction Problems in Cylindrical Coordinates and Numerical Simulations
下载PDF
导出
摘要 在柱坐标系下,首先为多介质的输运管单温辐射热传导和多介质的三温辐射热传导两类模型问题,构造了一种针对非混合网格的保对称有限体元(SFVE-I)格式;接着针对一种特殊混合网格,分别为定常扩散和三温辐射热传导模型问题,构造了一种有限体元(FVE-II)格式;进行了数值实验与数值仿真,其结果表明:对定常问题,在一致网格上有限体元解函数关于真解函数和流函数的逼近分别具有二阶、一阶精度;对上述两种模型问题,数值仿真得到与实际物理现象基本相符的热传导过程和温度分布,且能量守恒误差均小于5%。 Firstly,SFVE scheme was given on the non-mixed grid for two kinds of the radiative heat conduction equations,and FVE scheme was provided on the special mixed grid for the stationary diffusion problem and the radiative heat conduction equations.Numerical experimental and simulative results show that the new schemes have smaller energy conservation error(less than 5%) and hold saturated convergent order approximating to the exact solution and flux function for the stationary diffusion problem on the uniform mesh.Numerical simulation results of heat conduction are consistent with the actual physical phenomenons.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第2期275-283,共9页 Journal of System Simulation
基金 国家自然科学基金委员会-中国工程物理研究院联合基金(NSAF)(10676031) 国家自然科学基金(10972043) 国家863高技术惯性约束聚变专题资助项目
关键词 柱坐标 辐射热传导 保对称有限体元格式 混合网格 数值仿真 cylindrical coordinates radiative heat conduction SFVE scheme mixed grid numerical simulations
  • 相关文献

参考文献18

  • 1李德元 水鸿寿 汤敏君.关于非矩形网格上的二维抛物型方程的差分格式[J].数值计算与计算机应用,1980,(1980):217-224.
  • 2陈光南,张永慧.基于变分原理的二维热传导方程差分格式[J].计算物理,2002,19(4):299-304. 被引量:8
  • 3符尚武,付汉清,沈隆钧,黄书科,陈光南.二维三温能量方程的九点差分格式及其迭代解法[J].计算物理,1998,0(4):107-115. 被引量:37
  • 4袁光伟.扭曲网格上扩散方程九点格式的构造与分析[M].计算物理实验室年报,2005.
  • 5Jiming Wu. Linearly Exact Method and the Difference Scheme for Diffusion Equation on Quadrilateral Meshes [M]// Annual Report of LCP. Beijing, China: Atomic Energy Press, 2005: 256-169.
  • 6F Hermeline. A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes [J]. J. Comput. Phys. (S0021-9991), 2000, 160(2): 481-499.
  • 7Yuan Guangwei, Sheng Zhiqiang. Analysis of Accuracy of A Finite Volume Scheme for Diffusion Equations on Distorted Meshes [J]. J. Comput. Phys. (S0021-9991), 2007, 224(2): 1170-1189.
  • 8I Avatsmark. An Introduction to Multipoint Approximation for Quadralitcral Grids [J]. Comput Geosci. (S0098-3004), 2002, 6(4): 405-432.
  • 9李寿佛,张瑗,刘玉珍.热传导方程的一类无网格方法[J].计算物理,2007,24(5):573-580. 被引量:4
  • 10聂存云,舒适,盛志强.非结构四边形网格下的一类保对称有限体元格式[J].计算物理,2009,26(2):175-183. 被引量:5

二级参考文献17

  • 1沈智军,沈隆钧,吕桂霞,陈文,袁光伟.基于Riemann解的二维流体力学Lagrange有限点无网格方法[J].计算物理,2005,22(5):377-385. 被引量:5
  • 2[2]Y.Sadd, Iterative methods for Sparse Linear Systems,PWS Publishing Company, 1995.
  • 3[3]T.F.Chan, J.Xu,and L.Zikatanov, An agglomeration multigrid method for unstructured grids.Proceedings of 10-th International conference on Domain Decomposition methods, edit by J.Mandel,C.Farhat, and X.J.Cao, AMS, Providence, RI.
  • 4[4]J.W.Ruge and K.Stuben Algebraic mutigrid, Multigrid methods, SIAM, 1987.
  • 5[5]Bank,J.Xu, An algorithm for coarsing unstructured meshes, Numer. Math.,73:1(1996), 1-36.
  • 6[6]J.Mandel, Denver, CO, M.Brezina, Boulder, CO,and P.Vanek, Los Angeles, CA, Energy optimization of algebraic multigrid bases, Computing 62,(1999) 205-228.
  • 7[9]Shu shi, Xu jinchao, Xiao yingxiong and L.Zikatanov, Algebraic Multigrid Method on Lattice Block Materials, Recent Progress in Computional and Applied PDEs, Edited by Tony. F.Chan, et,al.Boston/London, (2002) 287-307.
  • 8[10]P.Vanek, J.Mandel, and M.Brezina, Algebraic multigrid on unstructured meshes,UCD/CCM Report 34, Center for Computational Mathematics, University of Colorado at Denver, December 1994.
  • 9李德元 陈光南.抛物型方程差分方法引论[M].北京:科学出版社,1998..
  • 10李寿佛,张瑗,刘玉珍.热传导方程的一类无网格方法[J].计算物理,2007,24(5):573-580. 被引量:4

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部