期刊文献+

一种新型的支持向量机约简方法及其应用 被引量:2

Novel Simplifying Method for Support Vector Machines and Its Application
下载PDF
导出
摘要 针对支持向量机(Support Vector Machine,SVM)处理大规模数据集常出现的训练速度慢、计算代价大以及实时性差等缺点,将基于密度的样本块划分法和基于欧式距离的边界样本筛选方法相结合,提出了一种新型的支持向量机约简方法。该方法首先进行空间块的划分,根据空间块的密度提取候选样本区域,并通过基于欧式距离改良的相对距离提取出大概率分布支持向量的边界样本。该方法既保证了训练样本的精度,又降低了计算代价,提高了泛化能力。工业应用结果表明了该方法不仅精度不低于SVM,并且计算速度远快于SVM。 Due to the drawbacks of slow training speed, large computational cost and poor real-time property when support vector machine deals with large scale data samples, a novel method was proposed for simplifying SVM, which combined the division method based on the sample density with the selection of boundary samples using Euclidean distance. Firstly, the proposed method divided the sample place into the sample blocks and selected the candidate space blocks by computing the blocks sample density. Secondly, it selected the boundary samples, which the support vectors were located along with high probability, using the relative distance based on the Euclidean distance. The industrial application results show that the algorithm is effective in reducing the training time and the computation and preserving machines' high accuracy.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第2期344-347,364,共5页 Journal of System Simulation
基金 国家863项目(2009AA04Z124) 国家自然科学基金(60874069) 湖南省自然科学基金(09JJ3122)
关键词 支持向量机 边界样本 样本块 样本密度 SVM boundary samples sample blocks sample density
  • 相关文献

参考文献10

  • 1Nello Cristianini, John Shawe-Taylor. An introduction to Support Vector Machines and other Kernel-based Learning Method [M]. London, UK: Cambridge University Press, 2000.
  • 2袁平,毛志忠,王福利.基于多支持向量机的软测量模型[J].系统仿真学报,2006,18(6):1458-1461. 被引量:18
  • 3郑宇杰,杨静宇,吴小俊,於东军.基于独立成分分析和模糊支持向量机的人脸识别方法[J].系统仿真学报,2005,17(7):1768-1770. 被引量:13
  • 4Nicholas I. Sapankeve. Time Series Prediction Using Support Vector Machines: A survey [J]. Computation Intelligence Magazine (S1556-603X), IEEE, 2009, 4(2): 24-38.
  • 5Suykens J A K, Vandewalle J. Lest Squares Support Vector Machine Classifiers [J]. Neural Processing Letters (S1370-4621), 1999, 9(3): 293-300.
  • 6Osuna E, Freund R, Girosi F. An Improved Training Algorithm for Support Vector Machine [C]// Proceedings of the 1997 IEEE Workshop on Network for Signal Processing VII, Amelea Island, USA. USA, IEEE, 1997: 276-285.
  • 7Yang M H, Ahuja N. A Geometric Approach to Train Support Vector Machines [C]// Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA. USA: IEEE, 2000: 430-437.
  • 8汪西莉,焦李成.一种基于马氏距离的支持向量快速提取算法[J].西安电子科技大学学报,2004,31(4):639-643. 被引量:21
  • 9刘万里,刘三阳,杜喆.SVM中基于距离的减样方法[J].数据采集与处理,2008,23(3):333-337. 被引量:3
  • 10Minqiang Li, Fuzan Chen. Candidtate vectors selection for training support vector machines [C]// Third International Conference on Natural Computation. New York, USA: Institute of Electrical and Electronics Engineers, 2007, 8: 538-542.

二级参考文献44

  • 1孙彦广,陶百生,高克伟.基于智能技术的钢水温度软测量[J].仪器仪表学报,2002,23(z2):754-755. 被引量:6
  • 2李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 3张俊杰,王顺晃.电弧炉炼钢过程终点自适应预报及专家操作指导系统[J].自动化学报,1993,19(4):463-467. 被引量:15
  • 4Platt J. Sequential Minimal Optimization : a Fast Algorithm for Training Support Vector Machines[A]. Advances in Kernel Methods-Support Vector Learning[C]. MA: MIT Press, 1998. 185-208.
  • 5Vapnik V. Statistical Learning Theory[M]. New York: John Wiley, 1998.
  • 6Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 955-974.
  • 7Ruiz A. Nonlinear Kernel-Based Statistical Pattern Analysis[J]. IEEE Trans on NN, 2001, 12(1): 16-32.
  • 8Joachims T. Making Large-scale SVM Learning Practical[A]. Advances in Kernel Methods-Support Vector Learning[C]. MA: MIT Press, 1998. 169-184.
  • 9张尧庭 方开泰.多元统计分析引论[M].北京:科学出版社,1997..
  • 10严士健.概率论与数理统计[M].北京:高等教育出板社,1990..

共引文献50

同被引文献16

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部