期刊文献+

一株耐酸产氢突变株Pantoea agglomerans的筛选与产氢特性 被引量:2

Screening of an aciduric hydrogen producing mutant Pantoea agglomerans and characterization of hydrogen production
下载PDF
导出
摘要 以红树林污泥中分离的厌氧发酵产氢细菌Pantoea agglomerans BH18为出发菌株,利用转座子Tn7随机插入菌株基因组DNA,通过卡那霉素筛选与PCR扩增验证,获得一批转座子插入突变菌株.起始pH4.0培养条件下,以产氢量为指标分离获得一株耐酸产氢突变菌株TB220.多次传代结果表明,突变菌株TB220具有稳定的产氢遗传特性.起始pH3.5~7.0范围内,突变菌株TB220最适产氢pH值为6.0,产氢量为(2.39±0.08)mol H2/mol葡萄糖.起始pH4.0和葡萄糖浓度10g/L的海水培养条件下,突变菌株TB220产氢量为(0.47±0.02)mol H2/mol葡萄糖,比野生菌株高70%,表现出较强耐酸性. A Tn7-based transposon was randomly inserted into genomic DNA of Pantoea agglomerans BH18,isolated from mangrove sludge.Mutants were screened by Kanr and amplification of the inserted sequences.At the initial pH 4.0,an aciduric and highly effective hydrogen producing mutant TB220 was screened using hydrogen production as screening index.The aciduric mutant TB220 was tested to have steady heredity and hydrogen-producing capability in several passages.The mutant TB220 was able to produce hydrogen over a wide rang of initial pH from 3.5 to 7.0,with an optimum initial pH of 6.0,and hydrogen production was(2.39 0.08)mol H2/mol glucose.Under the marine conditions with the initial pH of 4.0 and glucose concentration of 10 g/L,hydrogen production of the mutant TB220 was(0.47 0.02) mol H2/mol glucose,increasing by 70% compared with wild type.This indicated that the mutant showed high acid resistance capability.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2012年第1期125-129,共5页 China Environmental Science
基金 国家自然科学基金资助项目(40906074) 天津市海洋资源与化学重点实验室开放基金(200912)
关键词 成团泛菌 产氢量 转座子耐酸 Pantoea agglomerans hydrogen production transposon aciduric
  • 相关文献

参考文献24

  • 1Chin H L, Chen Z S, Chou C P. Fedbatch operation using Clostridium acetobutylicum suspension culture as bioeatalyst for enhancing hydrogen production [J]. Bioechnology Progress, 2003, 19:383-388.
  • 2Zhang H, Bruns M A, Logan B E. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor [J]. Water Resesrch, 2006,40:728-734.
  • 3Levin D B, Pitt L, Love M. Biohydrogen production: prospects and limitations to practical application [J]. International Journal of Hydrogen Energy, 2004,29:173-185.
  • 4Kumar N, Ghosh A, Das D. Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae [J]. Bioteehnology Letters, 2001,23:537-541.
  • 5Nakashimada Y, Rachman M A, Kakizono T, et al. Hydrogen production of Enterobacter aerogenes altered by extracellular and intracellular redox states [J]. International Joumal of Hydrogen Energy, 2002,27:1399-1405.
  • 6Fabiano B, Perego P. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes [J]. International Journal of Hydrogen Energy, 2002,27:149-156.
  • 7Xing D F, Ren N Q, Wang A J, et al. Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition [J]. International Journal of Hydrogen Energy, 2008,33:1489-1495.
  • 8Zhu D L, Wang G C, Qiao H J, et al. Fermentative hydrogen production by the new marine Pantoea agglomerans isolated from the mangrove sludge [J]. International Journal of Hydrogen Energy, 2008,33:6116-6123.
  • 9Valdez-Vazquez I, Rios-Leal E, Mufloz-P~iez K M. Effect of inhibition treatment, type of inocula and incubation temperature on batch H2 production from organic solid waste [J]. Bioteehnology and Bioengineering, 2006,95:342-349.
  • 10Liu H Y, Wang G C, Zhu D L, et al. Enrichment of the hydrogen-producing microbial community from marine intertidal sludge by different pretreatment methods [J]. International Journal of Hydrogen Energy, 2009,34:9696-9701.

二级参考文献57

共引文献58

同被引文献34

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部