期刊文献+

基于多方向Gabor滤波器和Adaboost的虹膜识别方法 被引量:2

A Multi-orientation Gabor Filter and Adaboost Based Iris Recognition Method
下载PDF
导出
摘要 结合虹膜的整体和局部纹理信息,提出一种新的虹膜特征提取和识别方法.首先将归一化虹膜进行分块,然后利用多方向Gabor滤波器分别对整个虹膜和虹膜子块进行编码并生成特征向量,最后使用Adaboost算法训练得到识别性能较好的特征用于识别.在数据库CASIA-IrisV3-Lamp中实验,该算法的识别率达到99.85%;在包含大量低质量虹膜图像的数据库NICE:Ⅱ中实验,算法也具有较好的识别性能,表明了算法既能充分地利用虹膜的纹理信息,又能有效地减少噪声的影响. A new method for iris feature extraction and recognition was proposed based on the global and local texture information of iris. The normalized iris was divided first. Then the multi- orientation Gabor filters were used to encode the whole iris and sub-block iris, and the feature vector was constructed. Furthermore, the Adaboost algorithm was adopted to choose some features whose recognition performances are good. The results of the experiments carried out on CASIA-IrisV3-Lamp database indicate that the accuracy of recognition reaches up to 99.85%. Moreover, the algorithm has good recognition performance on the NICE: ]] database which contains a large amount of poor quality images. It shows that the method not only can take fully advantage of the texture information of iris, but also can reduce efficiently the effect of noises.
机构地区 东北大学理学院
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第1期39-42,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(10801026)
关键词 多方向Gabor滤波器 ADABOOST算法 虹膜识别 特征提取 虹膜分块 multi-orientation Gabor filter Adaboost algorithm iris recognition feature extraction iris division
  • 相关文献

参考文献9

  • 1Daugman J. High confidence visual recognition of persons by test of statistical independence [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15 (11): 1148 - 1161.
  • 2Wildes R P. Iris recognition: an emerging biometric teehnology[J]. Proc IEEE, 1997,85(9) : 1348 - 1363.
  • 3Boles W W, Boashash B. A human identification technique using images of the iris and wavelet transform [J]. IEEE Transactions on Signal Processing, 1998, 46 ( 4 ) : 1185 - 1188.
  • 4Ma L, Tan T N, Wang Y H, et al. Personal identification based on iris texture analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (12) : 1519 - 1533.
  • 5He Z F, Sun Z N, Tan T N, et al. Boosting ordinal features for accurate and fast iris recognition [C] // 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, 2008 : 1-8.
  • 6王琪,张祥德,印雨,张铁.基于椭圆拟合的晃动虹膜图像的检测算法[J].东北大学学报(自然科学版),2010,31(7):938-941. 被引量:2
  • 7Li P H, Liu X M, Xiao L J, et al. Robust and accurate iris segmentation in very noisy iris images[J]. Image and Vision Computing, 2010,28(2) :246 - 253.
  • 8Tan T N, He Z F, Sun Z N. Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition[J]. Image and Vision Computing, 2009, 28 (2) :223 - 230.
  • 9Yin X C, Liu C P, Han Z. Feature combination using Boosting[J]. Pattern Recognition Letters, 2005,26 (14) : 2195 - 2205.

二级参考文献12

  • 1何家峰,叶虎年,叶妙元.虹膜图象质量评价的研究[J].中国图象图形学报(A辑),2003,8(4):387-391. 被引量:8
  • 2Daugman J. How iris recognition works [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004,14( 1 ) : 21 - 30.
  • 3Ma L, Tan T N, Wang Y H. Personal identification based on iris texture analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (12) : 1519 1533.
  • 4McHugh J T, Lee J H, Kuhla C B. Handheld iris imaging apparatus and method: US, 6289113[P]. 2001 - 09-11.
  • 5Zhu X D, Liu Y N, Ming X, et al. A quality evaluation method of iris images sequence based on wavelet coefficients in "region of interest" [C]//The 4th International Conference on Computer and Information Technology. Los Alarnitos: IEEE, 2004 : 24 - 27.
  • 6Zhou Z, Du Y Z, Belcher C. Transforming traditional iris recognition systems to work on non-ideal situations [C]// IEEE Workshop on Computational Intelligence in Biometrics: Theory, Algorithms, and Applications. Nashville, 2009:1- 8.
  • 7中国科学院自动化研究所.CASIA虹膜图像数据库(版本3.0)[DB/OL].[2007-11-23].http://www.sinobiometrics.com.
  • 8Zhang X D, Wang Q, Zhu H G, et al. Noise detection of iris image based on texture analysis [C] //2009 Chinese Control and Decision Conference. Piseataway: IEEE, 2009 : 2366 - 2370.
  • 9He Z F, Tan T N, Sun Z N, et al. Towards accurate and fast iris segmentation for iris biometrics [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31 (9) : 1670 - 1684.
  • 10Gonzalex RC,Woods RE.数字图像处理[M].2版,阮秋琦,阮宇智,译.北京:电子工业出版社,2004.

共引文献1

同被引文献5

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部