期刊文献+

解一阶双曲问题间断有限元方法的超收敛性质 被引量:1

Superconvergence of the Discontinuous Finite Element Method for Solving First-Order Hyperbolic Problems
下载PDF
导出
摘要 研究求解一阶双曲问题的间断有限元方法并分析方法的稳定性和收敛性.对于k次间断有限元,利用对偶论证技术建立了在求解区域和某些子区域上的负模误差估计.利用负模误差估计进一步证明了间断有限元解在这些区域和它们的流出边界上均值逼近具有O(h2k+1/2)阶超收敛性质.数值实例验证了理论分析结果. The discontinuous finite element method for solving the first-order hyperbolic problems was studied and the stability and convergence of this method were analyzed. For the k-order discontinuous finite elements, the negative norm error estimates are established on the solution domain and some suitably chosen subdomains by using the dual argument technique. Further, based on the negative norm error estimates, the O(h2k + 1/2)-order superconvergence is shown for the error on average on these domains and their outflow faces. These theoretical results are verified by numerical experiments.
作者 张铁 李铮
机构地区 东北大学理学院
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第1期149-152,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(11071033)
关键词 一阶双曲问题 间断有限元方法 稳定性和收敛性 负模误差估计 超收敛性 first-order hyperbolic problem discontinuous finite element method stability and convergence negative norm error estimate superconvergence
  • 相关文献

参考文献11

  • 1Cockburn B, Kamiadakis G E, Shu C W. Discontinuous Galerkin methods[M]. Berlin: Springer-Verlag, 2000.
  • 2Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems[J]. Journal of Scientific Computing, 2001,16(3):173-261.
  • 3Reed W H, Hill T R. Triangular mesh methods for neutron transport equation[D]. Los Alamos, New Mexcico: Los Alamos Scientific Laboratory, 1973.
  • 4Lasaint P, Raviart R A. On a finite element method for ,solving the neutron transport equation [ M ]. Boor C. Mathematical Aspects of Finite Elements in Partial Differential Equations. New York: Academic Press, 1974: 89-145.
  • 5Johnson C, Pitkaranta J. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation[J]. Math Comp, 1986,46(4):1-26.
  • 6张铁.一阶双曲方程组间断有限元方法.东北工学院学报,1987,8(2):250-257.
  • 7Peterson T E. A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation[J]. SIAMJ Numer Anal, 1991,28(3) : 133 - 140.
  • 8Cockbum B, Dong B, Guznmn J. Optimal convergence of the original DG method for the transport-reaction equation on special meshes [ J ]. SIAM J Numer Anal, 2008, 46 ( 3 ) : 1250 1265.
  • 9Adjerid S, Masscy T C. A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problem[ J ]. Comput Methods Appl Mech Engrg, 2002, 191:5877 5897.
  • 10Friedreichs K. Symmetric positive linear differential equations [J]. Comm Pure Appl Math, 1958,11(3):333 -418.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部