摘要
研究求解一阶双曲问题的间断有限元方法并分析方法的稳定性和收敛性.对于k次间断有限元,利用对偶论证技术建立了在求解区域和某些子区域上的负模误差估计.利用负模误差估计进一步证明了间断有限元解在这些区域和它们的流出边界上均值逼近具有O(h2k+1/2)阶超收敛性质.数值实例验证了理论分析结果.
The discontinuous finite element method for solving the first-order hyperbolic problems was studied and the stability and convergence of this method were analyzed. For the k-order discontinuous finite elements, the negative norm error estimates are established on the solution domain and some suitably chosen subdomains by using the dual argument technique. Further, based on the negative norm error estimates, the O(h2k + 1/2)-order superconvergence is shown for the error on average on these domains and their outflow faces. These theoretical results are verified by numerical experiments.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2012年第1期149-152,共4页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(11071033)
关键词
一阶双曲问题
间断有限元方法
稳定性和收敛性
负模误差估计
超收敛性
first-order hyperbolic problem
discontinuous finite element method
stability and convergence
negative norm error estimate
superconvergence