期刊文献+

Lunar titanium abundance characterization using Chang'E-1 IIM data 被引量:1

Lunar titanium abundance characterization using Chang’E-1 IIM data
原文传递
导出
摘要 Lunar titanium characterization is an important goal of the China Lunar Exploration Program. We suggest a method to determine the lunar titanium abundance using Chang'E-1 IIM (Interference Imaging Spectrometer) imagery. Using samples from Apollo and Luna landing sites, the method firstly establishes the spectral parameters that possess good non-linear correlations with lunar titanium abundance. Secondly, the method estimates lunar titanium abundance using a DT-SVM (Decision Tree Method C5.0-Support Vector Machine) method. Namely, according to the established spectral parameters, it uses the C5.0 algorithm to classify the titanium abundance into the 4 classes of very low, low, intermediate and high. Then, in terms of the spectral parameters and the corresponding classes, it employs the SVM to estimate the titanium abundance. The method makes good use of hyperspectral information, analyzes the nonlinear correlations between spectral characteristics of lunar soils and the composition parameter, and well determines the titanium abundance. Validated by the Apollo and Luna station samples, the RMSE (root mean square error) is 0.72wt% TiO2 and the correlation coefficient of the measured and predicted values is 97.29%. So, the method proposed in this paper has a good predictive capability for TiO2 abundance on the lunar surface. The maps of TiO2 content in the partial region of Sinus Iridium, the Apollo 17 landing site and the Apollo 16 landing site are constructed by our method. This paper demonstrates the potential of IIM data for the investigation of lunar surface chemistry and mineralogy. Lunar titanium characterization is an important goal of the China Lunar Exploration Program. We suggest a method to determine the lunar titanium abundance using Chang'E-1 IIM (Interference Imaging Spectrometer) imagery. Using samples from Apollo and Luna landing sites, the method firstly establishes the spectral parameters that possess good non-linear correlations with lunar titanium abundance. Secondly, the method estimates lunar titanium abundance using a DT-SVM (Decision Tree Method C5.0-Support Vector Machine) method. Namely, according to the established spectral parameters, it uses the C5.0 al- gorithm to classify the titanium abundance into the 4 classes of very low, low, intermediate and high. Then, in terms of the spectral parameters and the corresponding classes, it employs the SVM to estimate the titanium abundance. The method makes good use of hyperspectral information, analyzes the nonlinear correlations between spectral characteristics of lunar soils and the composition parameter, and well determines the titanium abundance. Validated by the Apollo and Luna station samples, the RMSE (root mean square error) is 0.72wt% TiO2 and the correlation coefficient of the measured and predicted values is 97.29%. So, the method proposed in this paper has a good predictive capability for TiO2 abundance on the lunar surface. The maps of TiO2 content in the partial region of Sinus Iridium, the Apollo 17 landing site and the Apollo 16 landing site are constructed by our method. This paper demonstrates the potential of IIM data for the investigation of lunar surface chemistry and mineralogy.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第1期170-178,共9页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 40902099) the Fundamental Research Funds for the Central Universities,China University of Geosciences (Wuhan) (Grant No. CUG100702)
  • 相关文献

参考文献5

二级参考文献80

  • 1薛彬,杨建峰,赵葆常.月球表面主要矿物反射光谱特性研究[J].地球物理学进展,2004,19(3):717-720. 被引量:19
  • 2胥涛,David T Blewett,李春来,王世杰.月球紫外-可见-近红外反射光谱的基本特征及解析方法[J].地球与环境,2004,32(3):27-33. 被引量:10
  • 3Mouelic S L, Yangevin Y, Erard S. A New Data Reduction Approach for the Clementine Data Set: Application to Aristillus, Aristarchus and Kepler[J].Journal of Geophysical Research,1999, 104(E2) : 3833-3843.
  • 4Mustard J F, Pieters C M, Photometric Phase Functions of Common Geologic Minerals and Applications to Quantitative Analysis of Mineral Mixture Reflectance Spectra [ J ]. Journal of Geophysical Research, 1989, 94( B10), 13619 - 13634.
  • 5Johnson P E, Smith M O, George S T, et al. Simple Algorithms for Remote Determination of Mineral Abundances and Particle Sizes from Reflectance Spectra [ J ]. Journal of Geophysical Research, 1992, 97 ( E2 ), 2649 - 2657.
  • 6Yan B K, Liu S W, Wang R S, et al, Experiment Study on Quantitative Retrieval of Mineral Abundances from Reflectance Spectra [ A ]. Proceedings of SPIE [ C ]. 2008, 7123 : 7123 - 1 - 7123 - 11.
  • 7Pieters C M, Hiroi T. RELAB ( Reflectance Experiment Laboratory) : A NASA Multispectrat Spectroscopy Facility[ A]. 35th Annual Lunar and Planetary Science Conference[ C ]. 2004, 1721 -1722.
  • 8Lucey P G, Blewett D T, Hawke B R. Mapping the FeO and TiO2 Content of the Lunar Surface with Muhispectral Imagery[J]. Journal of Geophysical Research, 1998,103 (E2) :3679 - 3699.
  • 9Clark R N, Roush T L. Reflectance Spectroscopy: Quantitative Analysis Techniques for Remote Sensing Application[ J]. Journal of Geophysical Research, 1984,89 ( B7 ) : 6329 - 6340.
  • 10Adams J, McCord T. Optical Properties of Mineral Separates, Glass, and Anorthositic Fragments from Apollo Mare Samples [ A]. Proceedings of the Lunar Science Conference[ C]. 1971,2 : 2183 -2195.

共引文献28

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部