摘要
设N 是欧氏空间En + 1 中的超曲面,M 是N 的子流形.本文研究 M 上的高斯映照,计算高斯映照的微分,由此建立起M 的Ricci 形式与第二。
Let N be a hypersurface of the Euclidean space E n+1 , and M be an submanifold isometrically immersed in N . In this paper, the Gauss map of M is studied. By determining the differential of the Gauss map, the relationship among the Ricci curvature, the second and the third fundamental forms of M is establish.
出处
《烟台大学学报(自然科学与工程版)》
CAS
2000年第1期13-17,共5页
Journal of Yantai University(Natural Science and Engineering Edition)