期刊文献+

采用IDL小波工具优化高光谱影像光谱特征匹配分类 被引量:1

An Optimized Method for Hyperspectral Imagery Spectral Feature Fitting Classification by Using IDL Wavelet Toolkit
下载PDF
导出
摘要 光谱特征匹配分类是常用的高光谱影像分类、识别地物的方法,针对高光谱影像提取植被盖度存在的问题,文章根据高光谱遥感影像处理的方法,采用EO-1卫星在广州市过境的Hyperion高光谱影像,以"广州南肺"万亩果园作为试验区,经过大气纠正——最小噪声分离变换(MNF)——最纯净像元指数计算(PPI)——提取植被的端元,以此作为研究区识别植被的参考样本,进行光谱特征匹配提取植被盖度。其中提出利用连续小波变换对参考端元的波谱曲线降噪的方法,旨在优化光谱特征匹配,以提高识别植被的精度。实验结果表明,这种辅助匹配的方法能有效提高识别植被的精度。 Spectral feature fitting(SFF) classification is a method commonly used in hyperspctral image classification and feature identification.To tackle the shortage of vegetation cover extracting from hyperspctral image,according to the processing method for hyperspectral remote sensing image,this study used the Hyperion hyperspectral image in Guangzhou captured by the EO-1 satellite and took Wan Mu Fruit Garden as experimental area which is known as the "Guangzhou South Lung".The experiment goes through the following process: atmospheric correction——minimum noise fraction transformation(MNF)—— pixel purity index calculation(PPI)——vegetation end-member extraction,which is taken as the identification reference sample for the spectral feature fitting.In this study we propose a noise reduction method for reference endmember's spectral curve by using continual wavelet transformation with the purpose of optimizing the spectral feature fitting to enhance the precision of vegetation recognition.The experimental result indicates that this auxiliary fitting method can effectively enhance the precision for vegetation recognition.
出处 《测绘与空间地理信息》 2012年第1期55-58,共4页 Geomatics & Spatial Information Technology
基金 国家自然科学基金项目(40801034) 广州市高校科技计划项目(08C025)资助
关键词 高光谱遥感 端元 小波变换 光谱特征匹配 hyperspectral remote sensing endmember wavelet transformation spectral feature fitting
  • 相关文献

参考文献18

  • 1Bonham - carter G F. Numerical Procedures and Computer Program for Fitting an Inverted Gaussian Model to Vegetation Reflectance Data[ J ]. Computers & Geosciences, 1988 (14) :339 -356.
  • 2G. Hughes. On the Mean Accuracy of statistical Pattern Recognizers[ ]]. IEEE Transactions on Information Theory,1968,14(1) :55 -63.
  • 3李新双,张良培,李平湘,吴波.基于小波分量特征值匹配的高光谱影像分类[J].武汉大学学报(信息科学版),2006,31(3):274-277. 被引量:6
  • 4Meroni, M. , Picchi, V. , Rossini, M. , et al. Leaf level early assessment of ozone injuries by passive fluorescence and PRI [ J ]. International Journal of Remote Sensing, 2008 (29a) :5 409 -5 422.
  • 5温兴平,胡光道,杨晓峰.基于光谱特征拟合的高光谱遥感影像植被覆盖度提取[J].地理与地理信息科学,2008,24(1):27-30. 被引量:12
  • 6M. Meroni, L. Busetto, R. Colombo, L. Guanter, J. Moreno, W. Verhoef. Performance of Spectral Fitting Methods for vegetation fluorescence quantification [ J ]. Remote Sensing of Environment,2010,114:363 - 374.
  • 7JensenJ.R.遥感数字影像处理导论[M].陈晓玲,龚威,李平湘,等,译.北京:机械工业出版社,2007.
  • 8Winter M E, Schlangen M, and Winter E M. Comparison of Autonomous Hyperspectral Endmember Determination Methods [ J]. American Society for Photogrammetry & Remote Sensing, 1999:444 -451.
  • 9B. Rivard, J. Feng, A. Gallie, et al. Continuous wavelets for the improved use of spectral libraries and hyperspectral data[ J ]. Remote Sensing of Environment, 2008 ( 112 ) :2 850 -2 862.
  • 10M. S. Reis, P. M. Saraiva, B. R. Bakshi. Denoising and Signal - to - Noise Ratio Enhancement: Wavelet Transform and Fourier Transform [ J ]. Comprehensive Chemometrics, 2009(2) :25 -55.

二级参考文献38

  • 1宋晓宇,王纪华,刘良云,黄文江,赵春江.基于高光谱遥感影像的大气纠正:用AVIRIS数据评价大气纠正模块FLAASH[J].遥感技术与应用,2005,20(4):393-398. 被引量:58
  • 2何立明,阎广建,王桥,李小文.光学遥感大气订正模型及其相关问题分析[J].地球信息科学,2005,7(4):33-38. 被引量:8
  • 3张金恒.基于连续统去除法的水稻氮素营养光谱诊断[J].植物生态学报,2006,30(1):78-82. 被引量:31
  • 4刘占宇,黄敬峰,吴新宏,董永平,王福民,刘朋涛.天然草地植被覆盖度的高光谱遥感估算模型[J].应用生态学报,2006,17(6):997-1002. 被引量:63
  • 5T. Cooleya, G. P. Andersona, G. W. Felde, et. al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation[A]. Proceeding of International Geoseienee and Remote Sensing Symposium(IGARSS) '02 [C]. IEEE,2002. 1414-1418.
  • 6S. Adler-Golden, A. Berk, L. S. Bernstein, et. al. FLAASH, a MODTRAN4 Atmospheric Correction Package for Hyperspectral Data Retrievals and Simulations[M].
  • 7A. Berk, S. M. Adler-Golden, A.J. Ratkowski, et. al. Exploiting MODTRAN radiation transport for atmospheric correction: The FLAASH algorithm information fusion[A]. Proceedings of the Fifth International Conference[C]. 2002(2):798-803.
  • 8G P Anderson, G W Felde, M L Hoke, et. al. MODTRAN4-based atmospheric correction algorithm: FLAASH(fast lineof-sight atmospheric analysis of spectral hypercuhes)[A]. Algorithms and Technologies for Multispeetral, Hyperspectral, and Ultraspectral Imagery [C]. 2002(8).
  • 9Matthew M W, Adler-Golden S M, Berk A,et al. Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data[A]. SPIE Proceeding Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspeetral Imagery[C]. 2003(9).
  • 10Vermote E F, Saleous N El, Justice C O. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surface:background, operational algorithm and validation[J]. Journal of Geophysical Research, 1997, 102, D (14): 17,131-137,141.

共引文献46

同被引文献12

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部