摘要
研究Cn 空间和Stein 流形上凸区域的边界性质.利用局部化技巧和Cn 空间中凸区域的СохоцкuuV-Plem elj公式,定义Stein流形上具有Aizenberg核的Cauchy型积分的奇异积分的Cauchy主值,得到如下的Stein 流形上凸区域的СохоцкuuV-Plem elj公式 F+ (η) = V.P.∫Mξf(ξ)K(η,ξ) + 12 f(η),η∈M A- (η) = V.P.∫Mξα(ξ)TK(η,ξ) - 12 α(η),η∈M这里,f(ξ) ∈D0,0(M).α(ξ) ∈Dn,n- 1(M),M 为凸区域的边界.
The boundary behaviour on a convex domain in C n and a Stein manifold is studied. By using the technique of localization and the Coxoцкu u∨ Plemelj formula on a convex domain in C n , Cauchy principal values of singular integrals of Cauchy type integrals with Aizerberg kernel in a Stein manifold are defined and the Coxoцкu uV Plemelj formula on a convex domain in a Stein manifold is obtained as follows: F +(η)= V.P .∫ M ξ f(ξ)K(η,ξ)+12f(η),η∈M, A -(η)= V.P .∫ M ξ α(ξ) TK(η,ξ)-12α(η),η∈M, where, f(ξ)∈D 0,0 (M),α(ξ)∈D n,n-1 (M), M is the boundary of the convex domain.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2000年第1期6-10,共5页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金!(19771068)
福建省自然科学基金!(A9810001)