期刊文献+

基于伪速度的动力学建模方法 被引量:2

Dynamics model method based on quasi-velocities
原文传递
导出
摘要 对伪速度进行了分类分析,给出了其物理含义,并对基于伪速度的动力学建模方法进行分析,比较了各个方法的计算量.以基于空间算子代数的对角化拉格朗日动力学方程为例,对由N个体组成的链式机械臂系统的动力学建模过程进行推导.与传统的方法相比,该方法计算过程具有占用计算机内存空间少、计算效率高的特点.基于伪速度的动力学建模方法为更好地解决当前复杂机械系统的动力学建模过程复杂及计算效率不高的难题提供了有效解决途径,为实时仿真、控制奠定了基础. Quasi-velocities were analyzed by classification,and its physical meaning was given.The computation amount of dynamics model methods base on quasi-velocities was compared.The chain manipulator system dynamics modeling process of N bodies was derived by diagonal Lagrange dynamic equation based on spatial operator.The computational efficiency of calculation method with less computer memory space is higher than traditional methods.This method can provide effective solutions to better solve the complex process of dynamic modeling and lay a foundation for real-time simulation and control.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第12期25-28,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国防科工委十一五预研项目 国家自然科学基金资助项目(50375071)
关键词 伪速度 动力学建模 计算量 高效率 程式化 quasi-velocities dynamic model computational amount high efficient stylized
  • 相关文献

参考文献10

  • 1洪嘉振,刘铸永.刚柔耦合动力学的建模方法[J].上海交通大学学报,2008,42(11):1922-1926. 被引量:48
  • 2林光春,杨志刚,徐礼钜.基于并行计算的杆长和惯性参数可变的平面闭链机构动力学解析模型[J].机械工程学报,2008,44(2):27-32. 被引量:3
  • 3Rong Bao, Rui Xiaoting, Wang Guoping, et al. New efficient method for dynamic modeling and simulation of flexible multibody systems moving in plane[J]. Multibody System Dynamics, 2010, 2(24) .. 181-200.
  • 4Shen N H, McClamroch, Bloch A M. Local equilibri- um controllability of multibody systems controlled via shape change [J]. IEEE Transactions on Automatic Control, 2004, 4(49): 506-520.
  • 5Jain A, Rodriguez G. Multibody mass matrix sensi- tivity analysis using spatial operators[J]. Journal for Multiscale Computational Engineering, 2003 (1) :2- 3.
  • 6孙宏丽,吴洪涛,田富洋,邵兵.空间算子代数刚柔耦合系统动力学软件流程[J].华中科技大学学报(自然科学版),2009,37(12):107-111. 被引量:8
  • 7Junkins J L, Schaub H. An instantaneous eigenstruc- ture quasiveloeity formulation for nonlinear multibody dynamics[J]. Astronaut Sci, 1997, 45.. 279-295.
  • 8刘云平,吴洪涛,方喜峰,姚裕.基于惯量伪速度的机械多体系统高效率动力学建模[J].机械科学与技术,2010,29(1):109-112. 被引量:1
  • 9Przemyslaw H, Krzysztof K. A survey of equations of motion in terms of inertial quasi-velocities for ser- ial manipulators[J]. Arch Appl Mech, 2006, 76.. 579-614.
  • 10Ma Xiangfeng, Xu Xiangrong. A further study on Kane's equations approach of robot dynamics[C]// Proceedings of the 1988 IEEE International Conf on System, Man, and Cybernetics. Piscataway: IEEE, 1988: 107-112.

二级参考文献44

  • 1Xu Liju Fan ShouwenChengdu University of Science and TechnologyChen YongSouthwest Jiaotong University.ANALYTICAL MODEL ALGORITHM FOR DYNAMICS OF ROBOTIC MANIPULATORS[J].Chinese Journal of Mechanical Engineering,1995,8(2):168-171. 被引量:6
  • 2陈永,李立,刘朝晖.带闭链机器人动力学建模的符号-数值技术[J].高技术通讯,1994,4(5):1-5. 被引量:3
  • 3李立,陈永.并联型机器人动力学建模的符号-数字方法[J].机械工程学报,1994,30(3):77-84. 被引量:12
  • 4刘锦阳,李彬,洪嘉振.作大范围空间运动柔性梁的刚-柔耦合动力学[J].力学学报,2006,38(2):276-282. 被引量:23
  • 5Schiehlen W. Multibody system dynamics: Roots and perspectives[J]. Multibody System Dynamics, 1997 (1) : 149-188.
  • 6Wasfy T M, Noor A K. Computational strategies for flexible multibody systems [ J ]. Appl Mech Nev, 2003, 56(6): 553-613.
  • 7Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J]. Journal of Guidance, Control and Dynamics, 1987, 10(2) : 139-151.
  • 8LIU Jin-yang, HONG Jia zhen. Dynamic modeling and modal truncation approach for a high-speed rotaring elastic beam[J]. Archive of Applied Mechanics, 2002, 72: 554-563.
  • 9YANG Hui, HONG Jia-zhen, YU Zheng-yue. Dynamics modeling of a flexible hub-beam system with a tip mass[J]. Journal of Sound and Vibration, 2003, 266 :759-774.
  • 10Banerjee A K. Block-diagonal equations for multibody elastodynamics with geometric stiffness and constraints[J]. Journal of Guidance, Control and Dynamics, 1994,16(6) :1092-1100.

共引文献53

同被引文献26

  • 1黄晓华,王兴成.机器人动力学的李群表示及其应用[J].中国机械工程,2007,18(2):201-205. 被引量:10
  • 2张达科,胡跃明,胡战虎.低抖振非奇异终端滑模控制[J].广东工业大学学报,2007,24(3):32-36. 被引量:6
  • 3丁希仑,李可佳,徐坤.基于旋量理论的弹性关节六腿机器人动力学分析[J].中南大学学报:自然科学版,2011,42(增刊1):589-595.
  • 4Rosillo N, Valera A, Benimeli F, et al. Real-time solving of dynamic problem in industrial robots [J]. Industrial Robot: An International Journal, 2011, 38(2) : 119 -129.
  • 5Sohl G A, Bobrow J E. A recursive multibody dynamics and sensitivity algorithm for branched kinematic chains[ J ]. ASME Journal of Dynamic Systems, Measurement, and Control, 2001, 123 (3) : 391 - 399.
  • 6Aslanov V, Krnglov G, Yudintsev V. Newton - Euler equations of multibody systems with changing structures for space applications [ J ]. Acta Astronautica, 2011, 68 ( 11 ) : 2080 - 2087.
  • 7Das M T, Canan Dtilger L. Mathematical modelling, simulation and experimental verification of a scara robot [ J ]. Simulation Modelling Practice and Theory, 2005, 13(3) : 257 -271.
  • 8Dwivedy S K, Eberhard P. Dynamic analysis of flexible manipulators, a literature review[ J ]. Mechanism and Machine Theory, 2006, 41(7) : 749 -777.
  • 9Bajodah A H, Hodges D H, Chen Y H. New form of Kane's equations of motion for constrained systems [ J ]. Journal of Guidance, Control, and Dynamics, 2003, 26( 1 ) : 79 - 88.
  • 10Feng Y, Yu X, Man Z. Non-singular terminal sliding mode control of rigid manipulators[ J]. Automatica, 2002, 38 (12) : 2159 - 2167.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部