期刊文献+

基于粗糙集(RS)和支持向量机(SVM)的混凝土性能预测实证研究 被引量:10

Prediction of concrete properties based on rough sets and support vector machine method
原文传递
导出
摘要 针对多元胶凝体系混凝土的性能预测问题,以各种原材料用量及其质量指标为预测自变量,以混凝土初始坍落度和7天、28天抗压强度为预测因变量,先采用粗糙集(RS)方法约简自变量组合,后采用支持向量机回归(SVR)模型建立混凝土性能预测模型。通过单掺粉煤灰集169组配合比、复掺粉煤灰和矿粉集135组配合比的2/3样本拟合、1/3样本预测实验,表明该模型预测精度明显优于线性回归,稳定性优于BP人工神经网络。进一步的自变量敏感性分析表明,RS-SVM模型能准确地反映混凝土性能对原材料变化的依赖性,总体性能最优。 This study develops a new prediction model of concrete properties that uses independent variables of all dosages of raw materials and their qualities and dependent variables of initial slump and cubic compressive strengths at the age of 7,28 days.In this model,a rough sets(RS) method is adopted for reduction of the independent variables,and a method of support vector machine regression(SVR) for prediction of concrete properties.Two groups of sample are collected and tested,one containing 169 sets of mixture with fly ash as admixture and the other containing 135 sets of mixture with fly ash and slag as admixture.Among these groups,one third of the mixtures are randomly selected for prediction verification.The test results show a better prediction accuracy of the new model than the linear regression method and more stable performances than the BP artificial network model.Through a sensitivity analysis it is revealed that the RS-SVM model is able to reflect the dependencies of concrete properties.
出处 《水力发电学报》 EI CSCD 北大核心 2011年第6期251-257,共7页 Journal of Hydroelectric Engineering
基金 浙江省自然科学基金项目(Y5080022) 浙江省水利厅重点科技计划项目(RB1009)
关键词 水工材料 性能预测 支持向量机 混凝土 粗糙集 配合比 hydraulic construction materials prediction of properties support vector machine concrete rough sets mixture
  • 相关文献

参考文献12

二级参考文献24

  • 1刘国华,陈斌,汪树玉,郑志强,何国余.基于人工神经网络和Monte-Carlo法的混凝土配合比优化设计研究[J].水力发电学报,2003,22(4):45-53. 被引量:14
  • 2赵胜利,刘燕.基于RBF网络的商品混凝土强度预测分析[J].计算机工程,2005,31(18):36-37. 被引量:9
  • 3李荣湘,李岳军.混凝土配合比多目标优化实时控制[J].水利学报,1996,28(4):34-39. 被引量:18
  • 4GBJ 146-90,粉煤灰混凝土应用技术规程[S].北京:中国标准出版社,1990.
  • 5Seung-Chang L.Predietion of concrete strength using artificial neural networks[J].Engineering Structures,2003(25):847-849.
  • 6VAPNIK V,LADIMIR N,The nature of statistical learning theory[M].Springer Verlag,New York,Inc,2000.
  • 7Wang Dehui, Chen Zhaoyuan, On prediction of compressive strength of mortars with ternary blends of cement, GGBFS and fly ash, Cement and Concrete Research, 1997, 27 (4) : 487-493.
  • 8Kasperkiewicz, J; Racz, J; Dubrawski, A, HPC strength prediction using artificial neural network, Journal of Computing in Civil Engineering, 1995, 9 (4) : 279-284.
  • 9Lai, S ; Sen-a, M, Concrete strength prediction by means of neural network, Construction and Building Materials,1997, 11 (2): 93-98.
  • 10Wang Ji-Zong, Ni Hong-Guang, He Jin - Yun, The application of automatic acquisition of knowledge to mix design of concrete, Cement and Concrete Research, 1999, 29 (12):1875-1880.

共引文献59

同被引文献78

引证文献10

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部